These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 8466650)

  • 1. Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach.
    Dimitrov SI; Bachvarov D; Moss T
    DNA Cell Biol; 1993 Apr; 12(3):275-81. PubMed ID: 8466650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis.
    McStay B; Hu CH; Pikaard CS; Reeder RH
    EMBO J; 1991 Aug; 10(8):2297-303. PubMed ID: 2065665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. xUBF contains a novel dimerization domain essential for RNA polymerase I transcription.
    McStay B; Frazier MW; Reeder RH
    Genes Dev; 1991 Nov; 5(11):1957-68. PubMed ID: 1936987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction.
    Leblanc B; Read C; Moss T
    EMBO J; 1993 Feb; 12(2):513-25. PubMed ID: 8440241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity in the Xenopus ribosomal transcription factor xUBF has a molecular basis distinct from that in mammals.
    Bachvarov D; Normandeau M; Moss T
    FEBS Lett; 1991 Aug; 288(1-2):55-9. PubMed ID: 1879565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing.
    Guimond A; Moss T
    Nucleic Acids Res; 1992 Jul; 20(13):3361-6. PubMed ID: 1630907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cis-acting signals for nuclear import and retention of the La (SS-B) autoantigen.
    Simons FH; Broers FJ; Van Venrooij WJ; Pruijn GJ
    Exp Cell Res; 1996 May; 224(2):224-36. PubMed ID: 8612699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes.
    Bachvarov D; Moss T
    Nucleic Acids Res; 1991 May; 19(9):2331-5. PubMed ID: 2041774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF.
    Cairns C; McStay B
    Nucleic Acids Res; 1995 Nov; 23(22):4583-90. PubMed ID: 8524646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF.
    Bazett-Jones DP; Leblanc B; Herfort M; Moss T
    Science; 1994 May; 264(5162):1134-7. PubMed ID: 8178172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes.
    Stefanovsky VY; Bazett-Jones DP; Pelletier G; Moss T
    Nucleic Acids Res; 1996 Aug; 24(16):3208-15. PubMed ID: 8774902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Yin Yang 1 transcription factor associates with ribonucleoprotein (mRNP) complexes in the cytoplasm of Xenopus oocytes.
    Ficzycz A; Ovsenek N
    J Biol Chem; 2002 Mar; 277(10):8382-7. PubMed ID: 11734562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. rUBF, an RNA polymerase I transcription factor from rats, produces DNase I footprints identical to those produced by xUBF, its homolog from frogs.
    Pikaard CS; Smith SD; Reeder RH; Rothblum L
    Mol Cell Biol; 1990 Jul; 10(7):3810-2. PubMed ID: 2355924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleoskeleton and nucleo-cytoplasmic transport in oocytes and early development of Xenopus laevis.
    Rudt F; Firmbach-Kraft I; Petersen M; Pieler T; Stick R
    Int J Dev Biol; 1996 Feb; 40(1):273-8. PubMed ID: 8735938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic retention and nuclear import of 5S ribosomal RNA containing RNPs.
    Rudt F; Pieler T
    EMBO J; 1996 Mar; 15(6):1383-91. PubMed ID: 8635471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-dependent cytoplasmic anchoring of a transcription factor subunit during Xenopus development.
    Brzostowski J; Robinson C; Orford R; Elgar S; Scarlett G; Peterkin T; Malartre M; Kneale G; Wormington M; Guille M
    EMBO J; 2000 Jul; 19(14):3683-93. PubMed ID: 10899122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of heavy metals on the binding of Xenopus upstream binding factor(xUBF) to DNA.
    Hsu T; Huang HM; Hu CH
    Chemosphere; 1998 Apr; 36(10):2367-73. PubMed ID: 9566304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the existence of a novel mechanism for the nuclear import of Hsc70.
    Lamian V; Small GM; Feldherr CM
    Exp Cell Res; 1996 Oct; 228(1):84-91. PubMed ID: 8892974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF.
    Pikaard CS; McStay B; Schultz MC; Bell SP; Reeder RH
    Genes Dev; 1989 Nov; 3(11):1779-88. PubMed ID: 2606347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.