These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The effect of supercoil and temperature on the recognition of palindromic and non-palindromic regions in phi X174 replicative form DNA by S1 and Bal31. Müller UR; Wilson CL J Biol Chem; 1987 Mar; 262(8):3730-8. PubMed ID: 3029123 [TBL] [Abstract][Full Text] [Related]
5. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. Rybenkov VV; Vologodskii AV; Cozzarelli NR J Mol Biol; 1997 Mar; 267(2):312-23. PubMed ID: 9096228 [TBL] [Abstract][Full Text] [Related]
6. Molecular modeling and energy refinement of supercoiled DNA. Hao MH; Olson WK J Biomol Struct Dyn; 1989 Dec; 7(3):661-92. PubMed ID: 2627304 [TBL] [Abstract][Full Text] [Related]
7. Left-handed Z form in superhelical DNA: a theoretical study. Vologodskii AV; Frank-Kamenetskii MD J Biomol Struct Dyn; 1984 Jun; 1(6):1325-33. PubMed ID: 6400823 [TBL] [Abstract][Full Text] [Related]
8. Influence of global DNA topology on cruciform formation in supercoiled DNA. Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741 [TBL] [Abstract][Full Text] [Related]
9. A theoretical study of formation of DNA noncanonical structures under negative superhelical stress. Anshelevich VV; Vologodskii AV; Frank-Kamenetskii MD J Biomol Struct Dyn; 1988 Oct; 6(2):247-59. PubMed ID: 2856035 [TBL] [Abstract][Full Text] [Related]
11. [Theoretical model of the B-Z transition in DNA with an arbitrary sequence]. Vologodskiĭ AV Mol Biol (Mosk); 1985; 19(4):1062-71. PubMed ID: 4047034 [TBL] [Abstract][Full Text] [Related]
12. Analysis of chemical and enzymatic cleavage frequencies in supercoiled DNA. Tsen H; Levene SD J Mol Biol; 2004 Mar; 336(5):1087-102. PubMed ID: 15037071 [TBL] [Abstract][Full Text] [Related]
13. Flow of structural information between four DNA conformational levels. Levin-Zaidman S; Reich Z; Wachtel EJ; Minsky A Biochemistry; 1996 Mar; 35(9):2985-91. PubMed ID: 8608136 [TBL] [Abstract][Full Text] [Related]
14. A model of the strain-induced B-Z transition. Sarai A; Jernigan RL J Biomol Struct Dyn; 1985 Feb; 2(4):767-84. PubMed ID: 3917118 [TBL] [Abstract][Full Text] [Related]
15. Sequence-dependent energetics of the B-Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Ellison MJ; Kelleher RJ; Wang AH; Habener JF; Rich A Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8320-4. PubMed ID: 3866225 [TBL] [Abstract][Full Text] [Related]
16. Negative supercoiling and nucleosome cores. I. The effect of negative supercoiling on the efficiency of nucleosome core formation in vitro. Patterton HG; von Holt C J Mol Biol; 1993 Feb; 229(3):623-36. PubMed ID: 8433363 [TBL] [Abstract][Full Text] [Related]
17. The influence of salt on the structure and energetics of supercoiled DNA. Schlick T; Li B; Olson WK Biophys J; 1994 Dec; 67(6):2146-66. PubMed ID: 7696459 [TBL] [Abstract][Full Text] [Related]
18. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. Bednar J; Furrer P; Stasiak A; Dubochet J; Egelman EH; Bates AD J Mol Biol; 1994 Jan; 235(3):825-47. PubMed ID: 8289322 [TBL] [Abstract][Full Text] [Related]
19. Competitive behavior of multiple, discrete B-Z transitions in supercoiled DNA. Kelleher RJ; Ellison MJ; Ho PS; Rich A Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6342-6. PubMed ID: 3462699 [TBL] [Abstract][Full Text] [Related]
20. The size of the topological domain modulates the B-Z transition of a (TG)n containing repeat. Albert AC; Leng M; Rahmouni AR J Biomol Struct Dyn; 1995 Aug; 13(1):47-56. PubMed ID: 8527030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]