BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8466804)

  • 1. Inhibition of the growth of yeasts in fermented salads.
    Bonestroo MH; de Wit JC; Kusters BJ; Rombouts FM
    Int J Food Microbiol; 1993 Feb; 17(4):311-20. PubMed ID: 8466804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose and sucrose fermenting capacity of homofermentative lactic acid bacteria used as starters in fermented salads.
    Bonestroo MH; Kusters BJ; de Wit JC; Rombouts FM
    Int J Food Microbiol; 1992; 15(3-4):365-76. PubMed ID: 1419542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts.
    Pérez-Díaz IM; McFeeters RF
    J Food Sci; 2010 May; 75(4):M204-8. PubMed ID: 20546411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce.
    Jacxsens L; Devlieghere F; Ragaert P; Vanneste E; Debevere J
    Int J Food Microbiol; 2003 Jun; 83(3):263-80. PubMed ID: 12745232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.
    Johanningsmeier SD; Franco W; Perez-Diaz I; McFeeters RF
    J Food Sci; 2012 Jul; 77(7):M397-404. PubMed ID: 22757713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows.
    Di Cagno R; Surico RF; Siragusa S; De Angelis M; Paradiso A; Minervini F; De Gara L; Gobbetti M
    Int J Food Microbiol; 2008 Oct; 127(3):220-8. PubMed ID: 18710789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride.
    McFeeters RF; Pérez-Díaz I
    J Food Sci; 2010 Apr; 75(3):C291-6. PubMed ID: 20492282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeasts in table olive processing: desirable or spoilage microorganisms?
    Arroyo-López FN; Romero-Gil V; Bautista-Gallego J; Rodríguez-Gómez F; Jiménez-Díaz R; García-García P; Querol A; Garrido-Fernández A
    Int J Food Microbiol; 2012 Nov; 160(1):42-9. PubMed ID: 23141644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the growth kinetics of Listeria monocytogenes in pasta salads at different storage temperatures and packaging conditions.
    De Cesare A; Vitali S; Tessema GT; Trevisani M; Fagereng TM; Beaufort A; Manfreda G; Skjerdal T
    Food Microbiol; 2018 Dec; 76():154-163. PubMed ID: 30166136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of a simple HPLC-based approach for the identification of the spoilage status of minced beef stored at various temperatures and packaging systems.
    Argyri AA; Doulgeraki AI; Blana VA; Panagou EZ; Nychas GJ
    Int J Food Microbiol; 2011 Oct; 150(1):25-33. PubMed ID: 21835483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of calcium lactate on the fate of spoilage and pathogenic microorganisms in orange juice.
    Yeh JY; Hoogetoorn E; Chen J
    J Food Prot; 2004 Jul; 67(7):1429-32. PubMed ID: 15270496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. beta-Glucanases as a tool for the control of wine spoilage yeasts.
    Enrique M; Ibáñez A; Marcos JF; Yuste M; Martínez M; Vallés S; Manzanares P
    J Food Sci; 2010; 75(1):M41-5. PubMed ID: 20492184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acid bacteria from fermented table olives.
    Hurtado A; Reguant C; Bordons A; Rozès N
    Food Microbiol; 2012 Aug; 31(1):1-8. PubMed ID: 22475936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of the specific growth rate inhibition by weak acids in yeasts based on energy requirements.
    Quintas C; Leyva JS; Sotoca R; Loureiro-Dias MC; Peinado JM
    Int J Food Microbiol; 2005 Apr; 100(1-3):125-30. PubMed ID: 15854698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of acidified cucumbers with a combination of fumaric acid and cinnamaldehyde that target lactic acid bacteria and yeasts.
    Pérez-Díaz IM
    J Food Sci; 2011 Sep; 76(7):M473-7. PubMed ID: 21824132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial spoilage of date rutab collected from the markets of Al-Hofuf city in the Kingdom of Saudi Arabia.
    Hamad SH
    J Food Prot; 2008 Jul; 71(7):1406-11. PubMed ID: 18680940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments.
    Martorell P; Stratford M; Steels H; Fernández-Espinar MT; Querol A
    Int J Food Microbiol; 2007 Mar; 114(2):234-42. PubMed ID: 17239464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum inhibitory concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring in meat products.
    Houtsma PC; de Wit JC; Rombouts FM
    Int J Food Microbiol; 1993 Dec; 20(4):247-57. PubMed ID: 8110602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.
    Di Cagno R; Cardinali G; Minervini G; Antonielli L; Rizzello CG; Ricciuti P; Gobbetti M
    Food Microbiol; 2010 May; 27(3):381-9. PubMed ID: 20227603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.