These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8466928)

  • 1. Use of irreversible electrical breakdown of lipid bilayers for the study of interaction of membranes with surface active molecules.
    Klotz KH; Winterhalter M; Benz R
    Biochim Biophys Acta; 1993 Apr; 1147(1):161-4. PubMed ID: 8466928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes.
    Wilhelm C; Winterhalter M; Zimmermann U; Benz R
    Biophys J; 1993 Jan; 64(1):121-8. PubMed ID: 8431536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field-induced breakdown of lipid bilayers and cell membranes: a thin viscoelastic film model.
    Dimitrov DS
    J Membr Biol; 1984; 78(1):53-60. PubMed ID: 6708093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore formation in phospholipid bilayers by amphiphilic cavitands.
    Elidrisi I; Negin S; Bhatt PV; Govender T; Kruger HG; Gokel GW; Maguire GE
    Org Biomol Chem; 2011 Jun; 9(12):4498-506. PubMed ID: 21509358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores.
    Glaser RW; Leikin SL; Chernomordik LV; Pastushenko VF; Sokirko AI
    Biochim Biophys Acta; 1988 May; 940(2):275-87. PubMed ID: 2453213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers.
    Velikonja A; Kramar P; Miklavčič D; Maček Lebar A
    Bioelectrochemistry; 2016 Dec; 112():132-7. PubMed ID: 26948707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of influenza virus proteins with planar bilayer lipid membranes. I. Characterization of their adsorption and incorporation into lipid bilayers.
    El Karadaghi S; Zakomirdin JA; Shimane C; Bucher DJ; Tverdislov VA; Kharitonenkov IG
    Biochim Biophys Acta; 1984 Dec; 778(2):269-75. PubMed ID: 6498192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields.
    Tieleman DP; Leontiadou H; Mark AE; Marrink SJ
    J Am Chem Soc; 2003 May; 125(21):6382-3. PubMed ID: 12785774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of H2TOEtPyP4 porphyrin on the stability and conductivity of bilayer lipid membranes.
    Torosyan A; Arakelyan V
    Eur Biophys J; 2015 Dec; 44(8):745-50. PubMed ID: 26307365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties.
    Xie JY; Ding GH; Karttunen M
    Biochim Biophys Acta; 2014 Mar; 1838(3):994-1002. PubMed ID: 24374317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The resealing process of lipid bilayers after reversible electrical breakdown.
    Benz R; Zimmermann U
    Biochim Biophys Acta; 1981 Jan; 640(1):169-78. PubMed ID: 7213683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles.
    Bingham RJ; Olmsted PD; Smye SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051909. PubMed ID: 20866263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies.
    Chernomordik LV; Sukharev SI; Popov SV; Pastushenko VF; Sokirko AV; Abidor IG; Chizmadzhev YA
    Biochim Biophys Acta; 1987 Sep; 902(3):360-73. PubMed ID: 3620466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore spanning lipid bilayers on mesoporous silica having varying pore size.
    Claesson M; Frost R; Svedhem S; Andersson M
    Langmuir; 2011 Jul; 27(14):8974-82. PubMed ID: 21650458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid membranes in external electric fields: kinetics of large pore formation causing rupture.
    Winterhalter M
    Adv Colloid Interface Sci; 2014 Jun; 208():121-8. PubMed ID: 24485595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions.
    Noppl-Simson DA; Needham D
    Biophys J; 1996 Mar; 70(3):1391-401. PubMed ID: 8785294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing insertion and solubilization effects of lysolipids on supported lipid bilayers using microcantilevers.
    Liu KW; Biswal SL
    Anal Chem; 2011 Jun; 83(12):4794-801. PubMed ID: 21604691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.