These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8467888)

  • 1. Dependence of elbow viscoelastic behavior on speed and loading in voluntary movements.
    Milner TE
    Exp Brain Res; 1993; 93(1):177-80. PubMed ID: 8467888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):488-98. PubMed ID: 8224075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretch reflex responses in the human elbow joint during a voluntary movement.
    Bennett DJ
    J Physiol; 1994 Jan; 474(2):339-51. PubMed ID: 8006819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation for mechanically unstable loading in voluntary wrist movement.
    Milner TE; Cloutier C
    Exp Brain Res; 1993; 94(3):522-32. PubMed ID: 8359266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The generation of the efferent command and the importance of joint compliance in fast elbow movements.
    Gottlieb GL
    Exp Brain Res; 1994; 97(3):545-50. PubMed ID: 8187865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elbow impedance during goal-directed movements.
    Popescu F; Hidler JM; Rymer WZ
    Exp Brain Res; 2003 Sep; 152(1):17-28. PubMed ID: 12879184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the symmetry of rapid movements. Effects of velocity and viscosity.
    Jaric S; Gottlieb GL; Latash ML; Corcos DM
    Exp Brain Res; 1998 May; 120(1):52-60. PubMed ID: 9628403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organizing principles for single-joint movements. I. A speed-insensitive strategy.
    Gottlieb GL; Corcos DM; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):342-57. PubMed ID: 2769334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The patterns of control signals underlying elbow joint movements in humans.
    St-Onge N; Qi H; Feldman AG
    Neurosci Lett; 1993 Dec; 164(1-2):171-4. PubMed ID: 8152596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexes.
    Shapiro MB; Gottlieb GL; Moore CG; Corcos DM
    J Neurophysiol; 2002 Aug; 88(2):1059-63. PubMed ID: 12163554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between joint torque, motion, and electromyographic patterns at the human elbow.
    Gottlieb GL; Chen CH; Corcos DM
    Exp Brain Res; 1995; 103(1):164-7. PubMed ID: 7615031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG responses to load perturbations of the upper limb: effect of dynamic coupling between shoulder and elbow motion.
    Lacquaniti F; Soechting JF
    Exp Brain Res; 1986; 61(3):482-96. PubMed ID: 3956610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of vibrating agonist or antagonist muscle of the reflex response to sinusoidal displacement of the human forearm.
    Matthews PB; Watson JD
    J Physiol; 1981 Dec; 321():297-316. PubMed ID: 7338812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid goal-directed elbow flexion movements: limitations of the speed control system due to neural constraints.
    Benecke R; Meinck HM; Conrad B
    Exp Brain Res; 1985; 59(3):470-7. PubMed ID: 4029322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multijoint reflex responses to constant-velocity volitional movements of the stroke elbow.
    Sangani SG; Starsky AJ; McGuire JR; Schmit BD
    J Neurophysiol; 2009 Sep; 102(3):1398-410. PubMed ID: 19553478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.