These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8467952)

  • 1. Regulation of horse-liver glutathione reductase.
    García-Alfonso C; Martínez-Galisteo E; Llobell A; Bárcena JA; López-Barea J
    Int J Biochem; 1993 Apr; 25(4):513-20. PubMed ID: 8467952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions.
    Pinto MC; Mata AM; Lopez-Barea J
    Arch Biochem Biophys; 1984 Jan; 228(1):1-12. PubMed ID: 6364985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox interconversion of glutathione reductase from Escherichia coli. A study with pure enzyme and cell-free extracts.
    Mata AM; Pinto MC; López-Barea J
    Mol Cell Biochem; 1985 May; 67(1):65-76. PubMed ID: 3894932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox interconversion of Escherichia coli glutathione reductase. A study with permeabilized and intact cells.
    Mata AM; Pinto MC; López-Barea J
    Mol Cell Biochem; 1985 Oct; 68(2):121-30. PubMed ID: 3908906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J; Lee CY
    Eur J Biochem; 1979 Aug; 98(2):487-99. PubMed ID: 39757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation-reactivation of two-electron reduced Escherichia coli glutathione reductase involving a dimer-monomer equilibrium.
    Arscott LD; Drake DM; Williams CH
    Biochemistry; 1989 Apr; 28(8):3591-8. PubMed ID: 2663073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible inactivation of recombinant rat liver guanidinoacetate methyltransferase by glutathione disulfide.
    Konishi K; Fujioka M
    Arch Biochem Biophys; 1991 Aug; 289(1):90-6. PubMed ID: 1898065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase.
    Pinto MC; Mata AM; López-Barea J
    Eur J Biochem; 1985 Sep; 151(2):275-81. PubMed ID: 3896786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horse-liver glutathione reductase: purification and characterization.
    García-Alfonso C; Martínez-Galisteo E; Llobell A; Bárcena JA; López-Barea J
    Int J Biochem; 1993 Jan; 25(1):61-8. PubMed ID: 8432383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human jejunal glutathione reductase: purification and evaluation of the NADPH- and glutathione-induced changes in redox state.
    Oğüs H; Ozer N
    Biochem Med Metab Biol; 1991 Feb; 45(1):65-73. PubMed ID: 2015111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol/disulfide exchange between 3-hydroxy-3-methylglutaryl-CoA reductase and glutathione. A thermodynamically facile dithiol oxidation.
    Cappel RE; Gilbert HF
    J Biol Chem; 1988 Sep; 263(25):12204-12. PubMed ID: 3410841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metals are directly involved in the redox interconversion of Saccharomyces cerevisiae glutathione reductase.
    Peinado J; Florindo J; García-Alfonso C; Martínez-Galisteo E; Llobell A; López-Barea J
    Mol Cell Biochem; 1991 Mar; 101(2):175-87. PubMed ID: 1861675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione reductase from Saccharomyces cerevisiae undergoes redox interconversion in situ and in vivo.
    Peinado J; Florindo J; López-Barea J
    Mol Cell Biochem; 1992 Mar; 110(2):135-43. PubMed ID: 1584202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH and oxidized thioredoxin mediate redox interconversion of calf-liver and Escherichia coli thioredoxin reductase.
    Martínez-Galisteo E; García-Alfonso C; Alicia Padilla C; Antonio Bárcena J; López-Barea J
    Mol Cell Biochem; 1992 Jan; 109(1):61-9. PubMed ID: 1319549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum is inactivated by cAMP and reactivated by NAD+.
    Hohman RJ; Veron M
    FEBS Lett; 1984 Jan; 165(2):265-8. PubMed ID: 6319183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting the reassociation and reactivation of the half-molecular weight nonidentical subunits of pigeon liver fatty acid synthetase.
    Muesing RA; Lornitzo FA; Kumar S; Porter JW
    J Biol Chem; 1975 Mar; 250(5):1814-23. PubMed ID: 234465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Essential lysine residue in glutathione reductase: chemical modification by pyridoxal 5'-phosphate.
    Pandey A; Katiyar SS
    Biochem Mol Biol Int; 1995 Jun; 36(2):347-54. PubMed ID: 7663438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioltransferase in human red blood cells: purification and properties.
    Mieyal JJ; Starke DW; Gravina SA; Dothey C; Chung JS
    Biochemistry; 1991 Jun; 30(25):6088-97. PubMed ID: 1829380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH.
    Cardoso LA; Ferreira ST; Hermes-Lima M
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Nov; 151(3):313-321. PubMed ID: 17544307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol - characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2005 Jun; 85(2):847-58. PubMed ID: 15788720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.