These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 8468080)
1. A new strategy for multifunction myoelectric control. Hudgins B; Parker P; Scott RN IEEE Trans Biomed Eng; 1993 Jan; 40(1):82-94. PubMed ID: 8468080 [TBL] [Abstract][Full Text] [Related]
2. Two-channel enhancement of a multifunction control system. Kuruganti U; Hudgins B; Scott RN IEEE Trans Biomed Eng; 1995 Jan; 42(1):109-11. PubMed ID: 7851924 [TBL] [Abstract][Full Text] [Related]
3. Myoelectric signal processing for control of powered limb prostheses. Parker P; Englehart K; Hudgins B J Electromyogr Kinesiol; 2006 Dec; 16(6):541-8. PubMed ID: 17045489 [TBL] [Abstract][Full Text] [Related]
4. Adaptive neuro-fuzzy logic analysis based on myoelectric signals for multifunction prosthesis control. Favieiro GW; Balbinot A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7888-91. PubMed ID: 22256169 [TBL] [Abstract][Full Text] [Related]
5. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning. Tam S; Boukadoum M; Campeau-Lecours A; Gosselin B Sci Rep; 2021 May; 11(1):11275. PubMed ID: 34050220 [TBL] [Abstract][Full Text] [Related]
6. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660 [TBL] [Abstract][Full Text] [Related]
7. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. Karlik B; Tokhi MO; Alci M IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995 [TBL] [Abstract][Full Text] [Related]
8. Evidence of deterministic chaos in the myoelectric signal. Nieminen H; Takala EP Electromyogr Clin Neurophysiol; 1996; 36(1):49-58. PubMed ID: 8654322 [TBL] [Abstract][Full Text] [Related]
9. Motion Artifact Suppression for Insulated EMG to Control Myoelectric Prostheses. Roland T Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075031 [TBL] [Abstract][Full Text] [Related]
10. Myoelectric prostheses for below-elbow amputees: the Trent experience. Datta D; Kingston J; Ronald J Int Disabil Stud; 1989; 11(4):167-70. PubMed ID: 2641944 [TBL] [Abstract][Full Text] [Related]
11. Automatic discrimination of myoelectric signals via parallel cascade identification. Korenberg MJ; Morin EL Ann Biomed Eng; 1997; 25(4):708-12. PubMed ID: 9236982 [TBL] [Abstract][Full Text] [Related]
12. Enhanced EMG signal processing for simultaneous and proportional myoelectric control. Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822 [TBL] [Abstract][Full Text] [Related]
13. Operator error in a level coded myoelectric control channel. Morin E; Parker PA; Scott RN IEEE Trans Biomed Eng; 1993 Jun; 40(6):558-62. PubMed ID: 8262537 [TBL] [Abstract][Full Text] [Related]
14. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm. López NM; di Sciascio F; Soria CM; Valentinuzzi ME Biomed Eng Online; 2009 Feb; 8():5. PubMed ID: 19243627 [TBL] [Abstract][Full Text] [Related]
15. A pseudoperiodic model for myoelectric signal during dynamic exercise. Helal JN; Duchene J IEEE Trans Biomed Eng; 1989 Nov; 36(11):1092-7. PubMed ID: 2807317 [TBL] [Abstract][Full Text] [Related]
16. A Classification Method for Myoelectric Control of Hand Prostheses Inspired by Muscle Coordination. Patel GK; Castellini C; Hahne JM; Farina D; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1745-1755. PubMed ID: 30072332 [TBL] [Abstract][Full Text] [Related]
17. Real time microcontroller implementation of an adaptive myoelectric filter. Bagwell PJ; Chappell PH Med Eng Phys; 1995 Mar; 17(2):151-60. PubMed ID: 7735646 [TBL] [Abstract][Full Text] [Related]
18. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses. Kanitz G; Cipriani C; Edin BB IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331 [TBL] [Abstract][Full Text] [Related]
19. Control of neuromuscular stimulation for ambulation by complete paraplegics via artificial neural networks. Kordylewski H; Graupe D Neurol Res; 2001 Jul; 23(5):472-81. PubMed ID: 11474803 [TBL] [Abstract][Full Text] [Related]
20. Channel and feature selection in multifunction myoelectric control. Khushaba RN; Al-Jumaily A Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5182-5. PubMed ID: 18003175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]