These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8468252)

  • 21. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets.
    Biswas AA; Lee SS; Mamuad LL; Kim SH; Choi YJ; Lee C; Lee K; Bae GS; Lee SS
    Anim Sci J; 2018 Jan; 89(1):114-121. PubMed ID: 28960611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins.
    Anantasook N; Wanapat M; Gunun P; Cherdthong A
    Anim Sci J; 2016 Jun; 87(6):783-90. PubMed ID: 27255184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system.
    Weller RA; Pilgrim AF
    Br J Nutr; 1974 Sep; 32(2):341-51. PubMed ID: 4213614
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of feeding lauric acid to lactating cows on milk composition, rumen fermentation, and blood lipids.
    Rindsig RB; Schultz LH
    J Dairy Sci; 1974 Nov; 57(11):1414-9. PubMed ID: 4430768
    [No Abstract]   [Full Text] [Related]  

  • 25. Artificial neural networks to model the rumen fermentation pattern in dairy cattle.
    Craninx M; Vlaeminck B; Fievez V
    Commun Agric Appl Biol Sci; 2006; 71(1):99-102. PubMed ID: 17191483
    [No Abstract]   [Full Text] [Related]  

  • 26. Differences in rumen fermentation characteristics between low-yield and high-yield dairy cows in early lactation.
    Sofyan A; Mitsumori M; Ohmori H; Uyeno Y; Hasunuma T; Akiyama K; Yamamoto H; Yokokawa H; Yamaguchi T; Shinkai T; Hirako M; Kushibiki S
    Anim Sci J; 2017 Jul; 88(7):974-982. PubMed ID: 27878924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of altering dilution rate on the pattern of fermentation in the rumen.
    Thompson DJ; Beever DE; Mundell DC; Elderfield ML; Harrison DG
    Proc Nutr Soc; 1975 Dec; 34(3):111A-112A. PubMed ID: 1208483
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of antibiotics and oil on microbial profiles and fermentation in mixed cultures of ruminal microorganisms.
    Johnson MC; Devine AA; Ellis JC; Grunden AM; Fellner V
    J Dairy Sci; 2009 Sep; 92(9):4467-80. PubMed ID: 19700708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation.
    Mitsumori M; Enishi O; Shinkai T; Higuchi K; Kobayashi Y; Takenaka A; Nagashima K; Mochizuki M; Kobayashi Y
    Anim Sci J; 2014 Mar; 85(3):227-32. PubMed ID: 24128067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of in vitro and in vivo rumen fermentation by rumen modifiers.
    de Jong A
    Acta Vet Scand Suppl; 1989; 86():96-9. PubMed ID: 2517575
    [No Abstract]   [Full Text] [Related]  

  • 32. Relationship between ammonia and volatile fatty acid levels in the rumen of fasting sheep.
    Zelenák I; Várady J; Boda K; Havassy I
    Physiol Bohemoslov; 1972; 21(5):531-7. PubMed ID: 4266222
    [No Abstract]   [Full Text] [Related]  

  • 33. [Hyperkeratosis of the rumen in disturbances of fermentation (author's transl)].
    Wensvoort P
    Tijdschr Diergeneeskd; 1981 Feb; 106(4):191-7. PubMed ID: 7209953
    [No Abstract]   [Full Text] [Related]  

  • 34. The use of pivalic acid as a reference substance in measurements of production of volatile fatty acids by rumen micro-organisms in vitro.
    Czerkawski JW
    Br J Nutr; 1976 Sep; 36(2):311-5. PubMed ID: 952843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Isolation, identification and rumen fermentation characteristics of Propionibacterium acnes].
    Wu L; Zhao M; Xia C; Ni H; Zhang H
    Wei Sheng Wu Xue Bao; 2009 Feb; 49(2):168-73. PubMed ID: 19445170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fermentation of polyalcohols by rumen microbes in vitro [proceedings].
    Poutiainen E; Tuori M; Sirviö I
    Proc Nutr Soc; 1976 Dec; 35(3):140A-141A. PubMed ID: 1028069
    [No Abstract]   [Full Text] [Related]  

  • 37. Effects of diaryliodonium chemicals on rumen fermentation in vitro and in vivo.
    Chalupa W; Patterson JA; Parish RC; Chow AW
    J Anim Sci; 1983 Jul; 57(1):186-94. PubMed ID: 6885659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prevention of patulin toxicity on rumen microbial fermentation by SH-containing reducing agents.
    Morgavi DP; Boudra H; Jouany JP; Graviou D
    J Agric Food Chem; 2003 Nov; 51(23):6906-10. PubMed ID: 14582994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of grazing steers as related to volatile fatty acid production after different lengths of in vitro fermentation.
    Barth KM; Shumway PE; Kazzal NT; Davis DI
    J Anim Sci; 1972 Apr; 34(4):636-41. PubMed ID: 5018017
    [No Abstract]   [Full Text] [Related]  

  • 40. Activation of volatile fatty acids in bovine liver and rumen epithelium. Evidence for control by autoregulation.
    Ash R; Baird GD
    Biochem J; 1973 Oct; 136(2):311-9. PubMed ID: 4359516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.