BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8468289)

  • 21. Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum.
    Mitsch MJ; diCenzo GC; Cowie A; Finan TM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 28916561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses.
    van Slooten JC; Bhuvanasvari TV; Bardin S; Stanley J
    Mol Plant Microbe Interact; 1992; 5(2):179-86. PubMed ID: 1617199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.
    Labes M; Rastogi V; Watson R; Finan TM
    J Bacteriol; 1993 May; 175(9):2662-73. PubMed ID: 8478331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport.
    Wang YP; Birkenhead K; Boesten B; Manian S; O'Gara F
    Gene; 1989 Dec; 85(1):135-44. PubMed ID: 2695394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons.
    Reid CJ; Walshaw DL; Poole PS
    Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2603-12. PubMed ID: 8828229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria.
    Forward JA; Behrendt MC; Wyborn NR; Cross R; Kelly DJ
    J Bacteriol; 1997 Sep; 179(17):5482-93. PubMed ID: 9287004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a system that allows a Rhizobium tropici dctA mutant to grow on succinate, but not on other C4-dicarboxylates.
    Batista S; Catalán AI; Hernández-Lucas I; Martínez-Romero E; Aguilar OM; Martínez-Drets G
    Can J Microbiol; 2001 Jun; 47(6):509-18. PubMed ID: 11467726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA.
    Baker KE; Ditullio KP; Neuhard J; Kelln RA
    J Bacteriol; 1996 Dec; 178(24):7099-105. PubMed ID: 8955389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NtrBC-dependent expression from the Rhizobium meliloti dctA promoter in Escherichia coli.
    Allaway D; Boesten B; O'Gara F
    FEMS Microbiol Lett; 1995 May; 128(3):241-5. PubMed ID: 7781970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB.
    Mavridou A; Barny MA; Poole P; Plaskitt K; Davies AE; Johnston AW; Downie JA
    Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():103-11. PubMed ID: 7894701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti.
    Sojda J; Gu B; Lee J; Hoover TR; Nixon BT
    Gene; 1999 Oct; 238(2):489-500. PubMed ID: 10570977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions.
    Ronson CW; Nixon BT; Albright LM; Ausubel FM
    J Bacteriol; 1987 Jun; 169(6):2424-31. PubMed ID: 3034856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products.
    Ronson CW; Astwood PM; Nixon BT; Ausubel FM
    Nucleic Acids Res; 1987 Oct; 15(19):7921-34. PubMed ID: 3671068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of the phosphate-binding loop of Rhizobium meliloti DctD, a sigma54-dependent activator.
    Gao Y; Wang YK; Hoover TR
    J Bacteriol; 1998 May; 180(10):2792-5. PubMed ID: 9573172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations within the activation domain of the sigma 54-dependent activator DctD that prevent transcriptional activation.
    Wang YK; Hoover TR
    J Bacteriol; 1997 Sep; 179(18):5812-9. PubMed ID: 9294439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of C(4)-dicarboxylates in Wolinella succinogenes.
    Ullmann R; Gross R; Simon J; Unden G; Kröger A
    J Bacteriol; 2000 Oct; 182(20):5757-64. PubMed ID: 11004174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of C4-dicarboxylate transport genes by external stimuli in Rhizobium meliloti.
    Batista S; Castro S; Aguilar OM; Martínez-Drets G
    Can J Microbiol; 1992 Jan; 38(1):51-5. PubMed ID: 1316220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain.
    Zhou YF; Nan B; Nan J; Ma Q; Panjikar S; Liang YH; Wang Y; Su XD
    J Mol Biol; 2008 Oct; 383(1):49-61. PubMed ID: 18725229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of dct genes in the Rhizobium meliloti-alfalfa interaction.
    Giblin L; Archdeacon J; O'Gara F
    World J Microbiol Biotechnol; 1996 Mar; 12(2):151-6. PubMed ID: 24415162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhizobium meliloti DctD, a sigma 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module.
    Gu B; Lee JH; Hoover TR; Scholl D; Nixon BT
    Mol Microbiol; 1994 Jul; 13(1):51-66. PubMed ID: 7984094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.