BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 8468290)

  • 1. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2292-303. PubMed ID: 8468290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2304-13. PubMed ID: 8468291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 May; 177(10):2760-8. PubMed ID: 7751286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving the roles of the Rhodobacter sphaeroides HemA and HemT 5-aminolevulinic acid synthases.
    Stoian N; Kaganjo J; Zeilstra-Ryalls J
    Mol Microbiol; 2018 Dec; 110(6):1011-1029. PubMed ID: 30232811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 Nov; 177(22):6422-31. PubMed ID: 7592416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli.
    Bolt EL; Kryszak L; Zeilstra-Ryalls J; Shoolingin-Jordan PM; Warren MJ
    Eur J Biochem; 1999 Oct; 265(1):290-9. PubMed ID: 10491185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene.
    van der Werf MJ; Zeikus JG
    Appl Environ Microbiol; 1996 Oct; 62(10):3560-6. PubMed ID: 8837411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain.
    Hornberger U; Liebetanz R; Tichy HV; Drews G
    Mol Gen Genet; 1990 May; 221(3):371-8. PubMed ID: 2381418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter.
    Kojima T; Masuda S
    J Gen Appl Microbiol; 2024 Mar; 69(5):270-277. PubMed ID: 37482422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production.
    Zhang L; Chen J; Chen N; Sun J; Zheng P; Ma Y
    Biotechnol Lett; 2013 May; 35(5):763-8. PubMed ID: 23338702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene.
    Fales L; Kryszak L; Zeilstra-Ryalls J
    J Bacteriol; 2001 Mar; 183(5):1568-76. PubMed ID: 11160087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters.
    Neidle EL; Kaplan S
    J Bacteriol; 1992 Oct; 174(20):6444-54. PubMed ID: 1400197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.
    Hungerer C; Troup B; Römling U; Jahn D
    J Bacteriol; 1995 Mar; 177(6):1435-43. PubMed ID: 7883699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides.
    Tai TN; Moore MD; Kaplan S
    Gene; 1988 Oct; 70(1):139-51. PubMed ID: 3266489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase.
    Xie L; Eiteman MA; Altman E
    Biotechnol Lett; 2003 Oct; 25(20):1751-5. PubMed ID: 14626421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1 and an intercistronic transcription terminator mutant.
    Lee JK; DeHoff BS; Donohue TJ; Gumport RI; Kaplan S
    J Biol Chem; 1989 Nov; 264(32):19354-65. PubMed ID: 2808428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and nucleotide sequence of the hemA gene of Agrobacterium radiobacter.
    Drolet M; Sasarman A
    Mol Gen Genet; 1991 Apr; 226(1-2):250-6. PubMed ID: 2034217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression.
    Ranson-Olson B; Jones DF; Donohue TJ; Zeilstra-Ryalls JH
    J Bacteriol; 2006 May; 188(9):3208-18. PubMed ID: 16621813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.