These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 8468291)

  • 1. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2304-13. PubMed ID: 8468291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 May; 177(10):2760-8. PubMed ID: 7751286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2292-303. PubMed ID: 8468290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving the roles of the Rhodobacter sphaeroides HemA and HemT 5-aminolevulinic acid synthases.
    Stoian N; Kaganjo J; Zeilstra-Ryalls J
    Mol Microbiol; 2018 Dec; 110(6):1011-1029. PubMed ID: 30232811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly.
    Gong L; Lee JK; Kaplan S
    J Bacteriol; 1994 May; 176(10):2946-61. PubMed ID: 8188596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli.
    Bolt EL; Kryszak L; Zeilstra-Ryalls J; Shoolingin-Jordan PM; Warren MJ
    Eur J Biochem; 1999 Oct; 265(1):290-9. PubMed ID: 10491185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene.
    van der Werf MJ; Zeikus JG
    Appl Environ Microbiol; 1996 Oct; 62(10):3560-6. PubMed ID: 8837411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides.
    Pasternak C; Haberzettl K; Klug G
    J Bacteriol; 1999 Jan; 181(1):100-6. PubMed ID: 9864318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences.
    Sockett RE; Donohue TJ; Varga AR; Kaplan S
    J Bacteriol; 1989 Jan; 171(1):436-46. PubMed ID: 2644200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter.
    Kojima T; Masuda S
    J Gen Appl Microbiol; 2024 Mar; 69(5):270-277. PubMed ID: 37482422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain.
    Hornberger U; Liebetanz R; Tichy HV; Drews G
    Mol Gen Genet; 1990 May; 221(3):371-8. PubMed ID: 2381418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides.
    Kiley PJ; Varga A; Kaplan S
    J Bacteriol; 1988 Mar; 170(3):1103-15. PubMed ID: 3277945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 Nov; 177(22):6422-31. PubMed ID: 7592416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the formation of bacteriochlorophyll, and B875- and B850-bacteriochlorophyll complexes in Rhodopseudomonas sphaeroides mutant strain H5.
    Oelze J
    Arch Microbiol; 1983 Dec; 136(4):312-6. PubMed ID: 6607717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of trans-acting mutations involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides.
    Lee JK; Kaplan S
    J Bacteriol; 1992 Feb; 174(4):1158-71. PubMed ID: 1735710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase.
    Xie L; Eiteman MA; Altman E
    Biotechnol Lett; 2003 Oct; 25(20):1751-5. PubMed ID: 14626421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene.
    Fales L; Kryszak L; Zeilstra-Ryalls J
    J Bacteriol; 2001 Mar; 183(5):1568-76. PubMed ID: 11160087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.