These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8468298)

  • 1. Choline transport activity in Staphylococcus aureus induced by osmotic stress and low phosphate concentrations.
    Kaenjak A; Graham JE; Wilkinson BJ
    J Bacteriol; 1993 Apr; 175(8):2400-6. PubMed ID: 8468298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline.
    Boch J; Kempf B; Bremer E
    J Bacteriol; 1994 Sep; 176(17):5364-71. PubMed ID: 8071213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophytica.
    Incharoensakdi A; Karnchanatat A
    Biochim Biophys Acta; 2003 Apr; 1621(1):102-9. PubMed ID: 12667616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation.
    Townsend DE; Wilkinson BJ
    J Bacteriol; 1992 Apr; 174(8):2702-10. PubMed ID: 1556088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for feedback (trans) regulation of, and two systems for, glycine betaine transport by Staphylococcus aureus.
    Stimeling KW; Graham JE; Kaenjak A; Wilkinson BJ
    Microbiology (Reading); 1994 Nov; 140 ( Pt 11)():3139-44. PubMed ID: 7812453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus.
    Amin US; Lash TD; Wilkinson BJ
    Arch Microbiol; 1995 Feb; 163(2):138-42. PubMed ID: 7710327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmoregulation in Rhodobacter sphaeroides.
    Abee T; Palmen R; Hellingwerf KJ; Konings WN
    J Bacteriol; 1990 Jan; 172(1):149-54. PubMed ID: 2294084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli.
    Landfald B; Strøm AR
    J Bacteriol; 1986 Mar; 165(3):849-55. PubMed ID: 3512525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an NaCl-sensitive Staphylococcus aureus mutant and rescue of the NaCl-sensitive phenotype by glycine betaine but not by other compatible solutes.
    Vijaranakul U; Nadakavukaren MJ; Bayles DO; Wilkinson BJ; Jayaswal RK
    Appl Environ Microbiol; 1997 May; 63(5):1889-97. PubMed ID: 9143120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine.
    Graham JE; Wilkinson BJ
    J Bacteriol; 1992 Apr; 174(8):2711-6. PubMed ID: 1556089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine betaine transport by Staphylococcus aureus: evidence for two transport systems and for their possible roles in osmoregulation.
    Pourkomailian B; Booth IR
    J Gen Microbiol; 1992 Dec; 138(12):2515-8. PubMed ID: 1487723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila.
    Robert H; Le Marrec C; Blanco C; Jebbar M
    Appl Environ Microbiol; 2000 Feb; 66(2):509-17. PubMed ID: 10653711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum.
    Farwick M; Siewe RM; Krämer R
    J Bacteriol; 1995 Aug; 177(16):4690-5. PubMed ID: 7642496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine betaine transport by Staphylococcus aureus: evidence for feedback regulation of the activity of the two transport systems.
    Pourkomailian B; Booth IR
    Microbiology (Reading); 1994 Nov; 140 ( Pt 11)():3131-8. PubMed ID: 7812452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine betaine transport in Escherichia coli: osmotic modulation.
    Perroud B; Le Rudulier D
    J Bacteriol; 1985 Jan; 161(1):393-401. PubMed ID: 3881395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-driven, osmotically activated glycine betaine transport in Listeria monocytogenes membrane vesicles.
    Gerhardt PN; Smith LT; Smith GM
    J Bacteriol; 1996 Nov; 178(21):6105-9. PubMed ID: 8892806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of osmoprotective compounds by hybridoma cells exposed to hyperosmotic stress.
    Oyaas K; Ellingsen TE; Dyrset N; Levine DW
    Biotechnol Bioeng; 1994 Jan; 43(1):77-89. PubMed ID: 18613313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection, mapping, and characterization of osmoregulatory mutants of Escherichia coli blocked in the choline-glycine betaine pathway.
    Styrvold OB; Falkenberg P; Landfald B; Eshoo MW; Bjørnsen T; Strøm AR
    J Bacteriol; 1986 Mar; 165(3):856-63. PubMed ID: 3512526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti.
    Fougère F; Le Rudulier D
    J Gen Microbiol; 1990 Jan; 136(1):157-63. PubMed ID: 2351954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an osmotically induced periplasmic glycine betaine-binding protein from Rhizobium meliloti.
    Le Rudulier D; Gloux K; Riou N
    Biochim Biophys Acta; 1991 Jan; 1061(2):197-205. PubMed ID: 1847827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.