These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8468336)

  • 1. A method for measuring mechanical work and work efficiency during human activities.
    Sun M; Hill JO
    J Biomech; 1993 Mar; 26(3):229-41. PubMed ID: 8468336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of energy expenditure for physical activity using a triaxial accelerometer.
    Bouten CV; Westerterp KR; Verduin M; Janssen JD
    Med Sci Sports Exerc; 1994 Dec; 26(12):1516-23. PubMed ID: 7869887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure.
    Sun M; Reed GW; Hill JO
    J Appl Physiol (1985); 1994 Jun; 76(6):2686-91. PubMed ID: 7928901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.
    Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM
    Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating physical activity energy expenditure with the Kinect Sensor in an exergaming environment.
    Nathan D; Huynh du Q; Rubenson J; Rosenberg M
    PLoS One; 2015; 10(5):e0127113. PubMed ID: 26000460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry.
    Garet M; Boudet G; Montaurier C; Vermorel M; Coudert J; Chamoux A
    Eur J Appl Physiol; 2005 May; 94(1-2):46-53. PubMed ID: 15609030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method to calculate external mechanical work using force-platform data in ecological situations in humans: Application to Parkinson's disease.
    Gigot V; Van Wymelbeke V; Laroche D; Mouillot T; Jacquin-Piques A; Rossé M; Tavan M; Brondel L
    Gait Posture; 2016 Jul; 48():202-208. PubMed ID: 27314435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description and validation of the ActiReg: a novel instrument to measure physical activity and energy expenditure.
    Hustvedt BE; Christophersen A; Johnsen LR; Tomten H; McNeill G; Haggarty P; Løvø A
    Br J Nutr; 2004 Dec; 92(6):1001-8. PubMed ID: 15613263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronous direct gradient layer and indirect room calorimetry.
    Seale JL; Rumpler WV
    J Appl Physiol (1985); 1997 Nov; 83(5):1775-81. PubMed ID: 9375351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory measurement of posture allocation and physical activity in children.
    Lanningham-Foster LM; Jensen TB; McCrady SK; Nysse LJ; Foster RC; Levine JA
    Med Sci Sports Exerc; 2005 Oct; 37(10):1800-5. PubMed ID: 16260984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total energy expenditure and physical activity measured with the bicarbonate-urea method in patients with human immunodeficiency virus infection.
    Paton NI; Elia M; Jebb SA; Jennings G; Macallan DC; Griffin GE
    Clin Sci (Lond); 1996 Aug; 91(2):241-5. PubMed ID: 8795450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The role of physical inactivity in the etiology of obesity].
    Schutz Y
    Ther Umsch; 1989 May; 46(5):281-90. PubMed ID: 2662469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a field technique for the measurement of energy expenditure: factorial method versus continuous respirometry.
    Geissler CA; Dzumbira TM; Noor MI
    Am J Clin Nutr; 1986 Nov; 44(5):596-602. PubMed ID: 3766445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscular mechanical energy expenditure as a process for detecting potential risks in manual materials handling.
    Gagnon M; Smyth G
    J Biomech; 1991; 24(3-4):191-203. PubMed ID: 2055908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic Assessment of the Nonexercise Activities under Free-Living Conditions.
    Sun S; Tang Q; Quan H; Lu Q; Sun M; Zhang K
    Biomed Res Int; 2016; 2016():8465976. PubMed ID: 27493966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [An anamnestic-observational estimation of the postural-energy-motor commitment of occupational activities via a questionnaire].
    Capodaglio EM; Bisio S
    G Ital Med Lav Ergon; 1997; 19(4):182-7. PubMed ID: 9775013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithm to improve accuracy of energy expended in a room calorimeter.
    Quan H; Hao W; Li L; Sun M; Zhang K
    Med Biol Eng Comput; 2017 Aug; 55(8):1215-1225. PubMed ID: 27766518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily physical activity assessment: what is the importance of upper limb movements vs whole body movements?
    Kumahara H; Tanaka H; Schutz Y
    Int J Obes Relat Metab Disord; 2004 Sep; 28(9):1105-10. PubMed ID: 15211366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Expenditure of Standing Compared to Sitting While Conducting Office Tasks.
    Burns J; Forde C; Dockrell S
    Hum Factors; 2017 Nov; 59(7):1078-1087. PubMed ID: 28719766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.