These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8469303)
41. Comparative topography of projections from the mesodiencephalic junction to the inferior olive, vestibular nuclei, and upper cervical cord in the cat. Spence SJ; Saint-Cyr JA J Comp Neurol; 1988 Feb; 268(3):357-74. PubMed ID: 3360994 [TBL] [Abstract][Full Text] [Related]
42. Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. Barmack NH; Pettorossi VE J Neurophysiol; 1985 Feb; 53(2):481-96. PubMed ID: 3872352 [TBL] [Abstract][Full Text] [Related]
43. Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Gerrits NM; Voogd J; Magras IN Brain Res; 1985 Apr; 332(2):325-36. PubMed ID: 3995273 [TBL] [Abstract][Full Text] [Related]
44. GABAergic pathways convey vestibular information to the beta nucleus and dorsomedial cell column of the inferior olive. Barmack NH Ann N Y Acad Sci; 1996 Jun; 781():541-52. PubMed ID: 8694443 [No Abstract] [Full Text] [Related]
45. Spatial organization of visual messages of the rabbit's cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. Leonard CS; Simpson JI; Graf W J Neurophysiol; 1988 Dec; 60(6):2073-90. PubMed ID: 3236062 [TBL] [Abstract][Full Text] [Related]
46. Morphological evidence for the presence of ipsilateral inferior olivary neurons during postnatal development of the olivocerebellar projection in the rat. López-Román A; Armengol JA J Comp Neurol; 1994 Dec; 350(3):485-96. PubMed ID: 7533800 [TBL] [Abstract][Full Text] [Related]
47. Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields. Winship IR; Wylie DR Exp Brain Res; 2001 Nov; 141(1):63-78. PubMed ID: 11685411 [TBL] [Abstract][Full Text] [Related]
48. Responses of Purkinje-cells of the cerebellar anterior vermis to stimulation of vestibular and somatosensory receptors. Bruschini L; Andre P; Pompeiano O; Manzoni D Neuroscience; 2006 Sep; 142(1):235-45. PubMed ID: 16843608 [TBL] [Abstract][Full Text] [Related]
49. Tilt responses of neurons in the caudal descending nucleus of the decerebrate cat: influence of the caudal cerebellar vermis and of neck receptors. Wilson VJ; Ikegami H; Schor RH; Thomson DB J Neurophysiol; 1996 Mar; 75(3):1242-9. PubMed ID: 8867132 [TBL] [Abstract][Full Text] [Related]
50. Morphology of single olivocerebellar axons in the denervation-reinnervation model produced by subtotal lesion of the rat inferior olive. Aoki H; Sugihara I Brain Res; 2012 Apr; 1449():24-37. PubMed ID: 22421016 [TBL] [Abstract][Full Text] [Related]
51. Locomotion coincides with c-Fos expression in related areas of inferior olive and cerebellar nuclei in the rat. Ruigrok TJ; van der Burg H; Sabel-Goedknegt E Neurosci Lett; 1996 Aug; 214(2-3):119-22. PubMed ID: 8878098 [TBL] [Abstract][Full Text] [Related]
52. Responses to vertical vestibular stimulation of neurons in the nucleus reticularis gigantocellularis in rabbits. Fagerson MH; Barmack NH J Neurophysiol; 1995 Jun; 73(6):2378-91. PubMed ID: 7666146 [TBL] [Abstract][Full Text] [Related]
53. Cortical control of cerebellar dentato-rubral and dentato-olivary neurons. Giaquinta G; Casabona A; Smecca G; Bosco G; Perciavalle V Neuroreport; 1999 Sep; 10(14):3009-13. PubMed ID: 10549814 [TBL] [Abstract][Full Text] [Related]
54. Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. Ris L; Godaux E J Neurophysiol; 1998 Nov; 80(5):2352-67. PubMed ID: 9819248 [TBL] [Abstract][Full Text] [Related]
55. The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Precht W; Volkind R; Maeda M; Giretti ML Neuroscience; 1976 Aug; 1(4):301-12. PubMed ID: 11370514 [TBL] [Abstract][Full Text] [Related]
56. Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. Hoang H; Lang EJ; Hirata Y; Tokuda IT; Aihara K; Toyama K; Kawato M; Schweighofer N PLoS Comput Biol; 2020 Jul; 16(7):e1008075. PubMed ID: 32730255 [TBL] [Abstract][Full Text] [Related]
57. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. Lisberger SG; Fuchs AF J Neurophysiol; 1978 May; 41(3):764-77. PubMed ID: 96226 [TBL] [Abstract][Full Text] [Related]
58. Fos responses to short-term adaptation of the horizontal vestibuloocular reflex before and after vestibular compensation in the Mongolian gerbil. Shinder ME; Perachio AA; Kaufman GD Brain Res; 2005 Jul; 1050(1-2):79-93. PubMed ID: 15978560 [TBL] [Abstract][Full Text] [Related]
59. Spatiotemporal response properties of cerebellar Purkinje cells to animal displacement: a population analysis. Pompeiano O; Andre P; Manzoni D Neuroscience; 1997 Dec; 81(3):609-26. PubMed ID: 9316015 [TBL] [Abstract][Full Text] [Related]
60. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells. Barmack NH; Yakhnitsa V Cerebellum; 2015 Oct; 14(5):597-612. PubMed ID: 26424151 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]