These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 8469987)
1. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Beese LS; Derbyshire V; Steitz TA Science; 1993 Apr; 260(5106):352-5. PubMed ID: 8469987 [TBL] [Abstract][Full Text] [Related]
2. Cocrystal structure of an editing complex of Klenow fragment with DNA. Freemont PS; Friedman JM; Beese LS; Sanderson MR; Steitz TA Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8924-8. PubMed ID: 3194400 [TBL] [Abstract][Full Text] [Related]
3. Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts. Catalano CE; Allen DJ; Benkovic SJ Biochemistry; 1990 Apr; 29(15):3612-21. PubMed ID: 2187527 [TBL] [Abstract][Full Text] [Related]
4. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related]
5. 3'-5' exonuclease of Klenow fragment: role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting. Lam WC; Thompson EH; Potapova O; Sun XC; Joyce CM; Millar DP Biochemistry; 2002 Mar; 41(12):3943-51. PubMed ID: 11900537 [TBL] [Abstract][Full Text] [Related]
6. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Freemont PS; Ollis DL; Steitz TA; Joyce CM Proteins; 1986 Sep; 1(1):66-73. PubMed ID: 3329725 [TBL] [Abstract][Full Text] [Related]
7. Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spectroscopy. Guest CR; Hochstrasser RA; Dupuy CG; Allen DJ; Benkovic SJ; Millar DP Biochemistry; 1991 Sep; 30(36):8759-70. PubMed ID: 1888736 [TBL] [Abstract][Full Text] [Related]
8. Identification of a new motif required for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): the RRRY motif is necessary for the binding of single-stranded DNA substrate and the template strand of the mismatched duplex. Kukreti P; Singh K; Ketkar A; Modak MJ J Biol Chem; 2008 Jun; 283(26):17979-90. PubMed ID: 18448432 [TBL] [Abstract][Full Text] [Related]
9. How DNA travels between the separate polymerase and 3'-5'-exonuclease sites of DNA polymerase I (Klenow fragment). Joyce CM J Biol Chem; 1989 Jun; 264(18):10858-66. PubMed ID: 2659595 [TBL] [Abstract][Full Text] [Related]
10. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
11. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M; Gibson KJ; Allen DJ; Benkovic SJ Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768 [TBL] [Abstract][Full Text] [Related]
12. Structure of Taq polymerase with DNA at the polymerase active site. Eom SH; Wang J; Steitz TA Nature; 1996 Jul; 382(6588):278-81. PubMed ID: 8717047 [TBL] [Abstract][Full Text] [Related]
13. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site. Moore BM; Jalluri RK; Doughty MB Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744 [TBL] [Abstract][Full Text] [Related]
14. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment. Thompson EH; Bailey MF; van der Schans EJ; Joyce CM; Millar DP Biochemistry; 2002 Jan; 41(3):713-22. PubMed ID: 11790092 [TBL] [Abstract][Full Text] [Related]
15. A molecular model of the complete three-dimensional structure of the Klenow fragment of Escherichia coli DNA polymerase I: binding of the dNTP substrate and template-primer. Yadav PN; Yadav JS; Modak MJ Biochemistry; 1992 Mar; 31(11):2879-86. PubMed ID: 1550814 [TBL] [Abstract][Full Text] [Related]
16. Identification and analysis of a template-primer (ds-DNA) binding cleft in E. coli DNA polymerase I: an electrostatic potential contour pattern of the modeled structure. Yadav PN; Modak MJ; Yadav JS J Mol Recognit; 1994 Sep; 7(3):207-9. PubMed ID: 7880545 [TBL] [Abstract][Full Text] [Related]
17. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding. Bailey MF; Van der Schans EJ; Millar DP Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151 [TBL] [Abstract][Full Text] [Related]
18. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases. Datta K; Johnson NP; LiCata VJ; von Hippel PH J Biol Chem; 2009 Jun; 284(25):17180-17193. PubMed ID: 19411253 [TBL] [Abstract][Full Text] [Related]
19. DNA synthesis on discontinuous templates by DNA polymerase I of Escherichia coli. Clark JM Gene; 1991 Jul; 104(1):75-80. PubMed ID: 1916280 [TBL] [Abstract][Full Text] [Related]
20. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. Bebenek K; Joyce CM; Fitzgerald MP; Kunkel TA J Biol Chem; 1990 Aug; 265(23):13878-87. PubMed ID: 2199444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]