BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 8470799)

  • 1. Synthesis of 3,4-cis-[3H]leucocyanidin and enzymatic reduction to catechin.
    Tanner GJ; Kristiansen KN
    Anal Biochem; 1993 Mar; 209(2):274-7. PubMed ID: 8470799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of different biomaterials to enantioselectively catalyze oxidation and reduction reactions.
    Nagaoka H
    Biotechnol Prog; 2004; 20(1):128-33. PubMed ID: 14763834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and quantification of phenolic compounds from the forage legume sainfoin ( Onobrychis viciifolia ).
    Regos I; Urbanella A; Treutter D
    J Agric Food Chem; 2009 Jul; 57(13):5843-52. PubMed ID: 19456170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evidence for the inhibition of grape dihydroflavonol 4-reductase by flavonols.
    Trabelsi N; Petit P; Manigand C; Langlois d'Estaintot B; Granier T; Chaudière J; Gallois B
    Acta Crystallogr D Biol Crystallogr; 2008 Aug; D64(Pt 8):883-91. PubMed ID: 18645237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of catechin oxidation by polyphenol oxidase at neutral pH.
    Jiménez-Atiénzar M; Cabanes J; Gandía-Herrero F; García-Carmona F
    Biochem Biophys Res Commun; 2004 Jul; 319(3):902-10. PubMed ID: 15184068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyphenols, condensed tannins, and other natural products in Onobrychis viciifolia (Sainfoin).
    Marais JP; Mueller-Harvey I; Brandt EV; Ferreira D
    J Agric Food Chem; 2000 Aug; 48(8):3440-7. PubMed ID: 10956131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of catechin and rutin by pentaammineruthenium(III) complexes.
    Sung J; Huang KS; Lai TJ; Chen YY; Lin CY; Yeh A; Wu D
    Inorg Chem; 2008 Dec; 47(23):11361-6. PubMed ID: 18954045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite stereochemical courses for enzyme-mediated alkene reductions of an enantiomeric substrate pair.
    Bougioukou DJ; Stewart JD
    J Am Chem Soc; 2008 Jun; 130(24):7655-8. PubMed ID: 18500801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms.
    Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA
    Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ analysis and structural elucidation of sainfoin (Onobrychis viciifolia) tannins for high-throughput germplasm screening.
    Gea A; Stringano E; Brown RH; Mueller-Harvey I
    J Agric Food Chem; 2011 Jan; 59(2):495-503. PubMed ID: 21175139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases.
    Gadda G
    Biochemistry; 2008 Dec; 47(52):13745-53. PubMed ID: 19053234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on the chemical comstituents of Pithecellobium clypearia].
    Su MX; Tang ZY; Huang WH; Li YL; Cen YZ
    Zhong Yao Cai; 2009 May; 32(5):705-7. PubMed ID: 19771841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of salt and pH on the reductive half-reaction of Mycobacterium tuberculosis FprA with NADPH.
    Pennati A; Zanetti G; Aliverti A; Gadda G
    Biochemistry; 2008 Mar; 47(11):3418-25. PubMed ID: 18293930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the contribution of the positively charged headgroup of choline to substrate binding and catalysis in the reaction catalyzed by choline oxidase.
    Gadda G; Fan F; Hoang JV
    Arch Biochem Biophys; 2006 Jul; 451(2):182-7. PubMed ID: 16713988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies.
    Nidetzky B; Brüggler K; Kratzer R; Mayr P
    J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of xenobiotic reductase A from Pseudomonas putida 86.
    Spiegelhauer O; Dickert F; Mende S; Niks D; Hille R; Ullmann M; Dobbek H
    Biochemistry; 2009 Dec; 48(48):11412-20. PubMed ID: 19839648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis.
    Yamashita A; Kato H; Wakatsuki S; Tomizaki T; Nakatsu T; Nakajima K; Hashimoto T; Yamada Y; Oda J
    Biochemistry; 1999 Jun; 38(24):7630-7. PubMed ID: 10387002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.