BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8470823)

  • 1. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius.
    Riggs CM; Lanyon LE; Boyde A
    Anat Embryol (Berl); 1993 Mar; 187(3):231-8. PubMed ID: 8470823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical implications of collagen fibre orientation in cortical bone of the equine radius.
    Riggs CM; Vaughan LC; Evans GP; Lanyon LE; Boyde A
    Anat Embryol (Berl); 1993 Mar; 187(3):239-48. PubMed ID: 8470824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of structural and material adaptation to specific strain features in cortical bone.
    Skedros JG; Mason MW; Nelson MC; Bloebaum RD
    Anat Rec; 1996 Sep; 246(1):47-63. PubMed ID: 8876823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius.
    Mason MW; Skedros JG; Bloebaum RD
    Bone; 1995 Sep; 17(3):229-37. PubMed ID: 8541135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution.
    Takano Y; Turner CH; Owan I; Martin RB; Lau ST; Forwood MR; Burr DB
    J Orthop Res; 1999 Jan; 17(1):59-66. PubMed ID: 10073648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods.
    Biewener AA; Thomason J; Goodship A; Lanyon LE
    J Biomech; 1983; 16(8):565-76. PubMed ID: 6643529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus.
    Skedros JG; Hunt KJ; Bloebaum RD
    J Morphol; 2004 Mar; 259(3):281-307. PubMed ID: 14994328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods.
    Martin RB; Lau ST; Mathews PV; Gibson VA; Stover SM
    J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postexercise and positional variation in mechanical properties of the radius in young horses.
    Batson EL; Reilly GC; Currey JD; Balderson DS
    Equine Vet J; 2000 Mar; 32(2):95-100. PubMed ID: 10743963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loading conditions and cortical bone construction of an artiodactyl calcaneus.
    Su SC; Skedros JG; Bachus KN; Bloebaum RD
    J Exp Biol; 1999 Nov; 202(Pt 22):3239-54. PubMed ID: 10539972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius.
    Main RP
    J Anat; 2007 Mar; 210(3):272-93. PubMed ID: 17331177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen fiber orientation pattern, osteon morphology and distribution, and presence of laminar histology do not distinguish torsion from bending in bat and pigeon wing bones.
    Skedros JG; Doutré MS
    J Anat; 2019 Jun; 234(6):748-763. PubMed ID: 30924933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing inferences about mechanical properties.
    Carando S; Portigliatti-Barbos M; Ascenzi A; Riggs CM; Boyde A
    Bone; 1991; 12(4):265-9. PubMed ID: 1793677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern of collagen fiber orientation in the ovine calcaneal shaft and its relation to locomotor-induced strain.
    McMahon JM; Boyde A; Bromage TG
    Anat Rec; 1995 Jun; 242(2):147-58. PubMed ID: 7668399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone.
    Skedros JG; Hunt KJ; Hughes PE; Winet H
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jul; 273(1):609-29. PubMed ID: 12808646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of microcracking and failure in bone depends on the loading mode to which it is adapted.
    Reilly GC; Currey JD
    J Exp Biol; 1999 Mar; 202(Pt 5):543-52. PubMed ID: 9929457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses.
    Stover SM; Pool RR; Martin RB; Morgan JP
    J Anat; 1992 Dec; 181 ( Pt 3)(Pt 3):455-69. PubMed ID: 1304584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images.
    Skedros JG; Mendenhall SD; Kiser CJ; Winet H
    Bone; 2009 Mar; 44(3):392-403. PubMed ID: 19049911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen fibril patterns in compact bone: preliminary ultrastructural observations.
    Raspanti M; Guizzardi S; Strocchi R; Ruggeri A
    Acta Anat (Basel); 1996; 155(4):249-56. PubMed ID: 8883536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.