These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8471034)

  • 1. Large changes of transition-state structure during experimental evolution of an enzyme.
    Srinivasan K; Konstantinidis A; Sinnott ML; Hall BG
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):15-7. PubMed ID: 8471034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic consequences of experimental evolution: catalysis by a 'third-generation' evolvant of the second beta-galactosidase of Escherichia coli, ebgabcde, and by ebgabcd, a 'second-generation' evolvant containing two supposedly 'kinetically silent' mutations.
    Krishnan S; Hall BG; Sinnott ML
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):971-7. PubMed ID: 8554546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic consequences of experimental evolution. Studies on the subunit structure of the second (ebg) beta-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions.
    Elliott AC; K S; Sinnott ML; Smith PJ; Bommuswamy J; Guo Z; Hall BG; Zhang Y
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):155-64. PubMed ID: 1540130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.
    Selwood T; Sinnott ML
    Biochem J; 1990 Jun; 268(2):317-23. PubMed ID: 2114090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 3. Evidence that Glu-461 participates in Brønsted acid-base catalysis of beta-D-galactopyranosyl group transfer.
    Richard JP; Huber RE; Lin S; Heo C; Amyes TL
    Biochemistry; 1996 Sep; 35(38):12377-86. PubMed ID: 8823173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases.
    Richard JP; Huber RE; Heo C; Amyes TL; Lin S
    Biochemistry; 1996 Sep; 35(38):12387-401. PubMed ID: 8823174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion.
    Richard JP; Westerfeld JG; Lin S; Beard J
    Biochemistry; 1995 Sep; 34(37):11713-24. PubMed ID: 7547903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved beta-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event.
    Li BF; Holdup D; Morton CA; Sinnott ML
    Biochem J; 1989 May; 260(1):109-14. PubMed ID: 2505746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground-state, transition-state, and metal-cation effects of the 2-hydroxyl group on beta-D-galactopyranosyl transfer catalyzed by beta-galactosidase (Escherichia coli, lac Z).
    Richard JP; McCall DA; Heo CK; Toteva MM
    Biochemistry; 2005 Sep; 44(35):11872-81. PubMed ID: 16128589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose.
    Roth NJ; Huber RE
    J Biol Chem; 1996 Jun; 271(24):14296-301. PubMed ID: 8662937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase.
    Juers DH; Hakda S; Matthews BW; Huber RE
    Biochemistry; 2003 Nov; 42(46):13505-11. PubMed ID: 14621996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalysis by the large subunit of the second beta-galactosidase of Escherichia coli in the absence of the small subunit.
    Calugaru SV; Hall BG; Sinnott ML
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):281-6. PubMed ID: 7492325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence upon pH of steady-state parameters for the beta-galactosidase-catalysed hydrolyses of beta-D-galactopyranosyl derivatives of different chemical types.
    Withers SG; Jullien M; Sinnott ML; Viratelle OM; Yon JM
    Eur J Biochem; 1978 Jun; 87(2):249-56. PubMed ID: 27358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitution for Asn460 cripples β-galactosidase (Escherichia coli) by increasing substrate affinity and decreasing transition state stability.
    Wheatley RW; Kappelhoff JC; Hahn JN; Dugdale ML; Dutkoski MJ; Tamman SD; Fraser ME; Huber RE
    Arch Biochem Biophys; 2012 May; 521(1-2):51-61. PubMed ID: 22446164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop.
    Jancewicz LJ; Wheatley RW; Sutendra G; Lee M; Fraser ME; Huber RE
    Arch Biochem Biophys; 2012 Jan; 517(2):111-22. PubMed ID: 22155115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrhenius plot for a reaction catalyzed by a single molecule of β-galactosidase.
    Craig DB; Chase LN
    Anal Chem; 2012 Feb; 84(4):2044-7. PubMed ID: 22263928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli.
    Gebler JC; Aebersold R; Withers SG
    J Biol Chem; 1992 Jun; 267(16):11126-30. PubMed ID: 1350782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis.
    Roth NJ; Rob B; Huber RE
    Biochemistry; 1998 Jul; 37(28):10099-107. PubMed ID: 9665715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. His-391 of beta-galactosidase (Escherichia coli) promotes catalyses by strong interactions with the transition state.
    Huber RE; Hlede IY; Roth NJ; McKenzie KC; Ghumman KK
    Biochem Cell Biol; 2001; 79(2):183-93. PubMed ID: 11310566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the substrate specificities of an enzyme during directed evolution of new functions.
    Hall BG
    Biochemistry; 1981 Jul; 20(14):4042-9. PubMed ID: 6793063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.