These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 8471648)

  • 1. [Self-similarity in the structure of DNA: why are introns needed?].
    Grosberg AIu; Rabin I; Khavlin Sh; Nir A
    Biofizika; 1993; 38(1):75-83. PubMed ID: 8471648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range correlations in nucleotide sequences.
    Peng CK; Buldyrev SV; Goldberger AL; Havlin S; Sciortino F; Simons M; Stanley HE
    Nature; 1992 Mar; 356(6365):168-70. PubMed ID: 1301010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales.
    Sugahara J; Kikuta K; Fujishima K; Yachie N; Tomita M; Kanai A
    Mol Biol Evol; 2008 Dec; 25(12):2709-16. PubMed ID: 18832079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarities inferred from the studies of long range correlations among mitochondrial DNA sequences.
    Gupta SK; Ghosh TC
    Indian J Biochem Biophys; 1997 Jun; 34(3):259-65. PubMed ID: 9425745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic level architecture of group I introns revealed.
    Vicens Q; Cech TR
    Trends Biochem Sci; 2006 Jan; 31(1):41-51. PubMed ID: 16356725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New intron-containing human tRNA(Leu) genes.
    Karwowska U; Szweykowska-Kulińska Z
    Acta Biochim Pol; 1997; 44(4):791-4. PubMed ID: 9584861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A peripheral element assembles the compact core structure essential for group I intron self-splicing.
    Xiao M; Li T; Yuan X; Shang Y; Wang F; Chen S; Zhang Y
    Nucleic Acids Res; 2005; 33(14):4602-11. PubMed ID: 16100381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications.
    Dombrovska O; Qiu YL
    Mol Phylogenet Evol; 2004 Jul; 32(1):246-63. PubMed ID: 15186811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures.
    Hausner G; Olson R; Simon D; Johnson I; Sanders ER; Karol KG; McCourt RM; Zimmerly S
    Mol Biol Evol; 2006 Feb; 23(2):380-91. PubMed ID: 16267141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA-mediated intron losses: evidence from extraordinarily large exons.
    Niu DK; Hou WR; Li SW
    Mol Biol Evol; 2005 Jun; 22(6):1475-81. PubMed ID: 15788745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors.
    Fridmanis D; Fredriksson R; Kapa I; Schiöth HB; Klovins J
    Mol Phylogenet Evol; 2007 Jun; 43(3):864-80. PubMed ID: 17188520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.
    Löhne C; Borsch T
    Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical evolution and intragenic spread of lichen-fungal group I introns.
    Bhattacharya D; Friedl T; Helms G
    J Mol Evol; 2002 Jul; 55(1):74-84. PubMed ID: 12165844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-splicing of a Podospora anserina group IIA intron in vitro. Effects of 3'-terminal intron alterations on cleavage at the 5' and 3' splice site.
    Schmidt U; Sägebarth R; Schmelzer C; Stahl U
    J Mol Biol; 1993 Jun; 231(3):559-68. PubMed ID: 8515440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequence-based model accounts largely for the relationship of intron positions to protein structural features.
    De Kee DW; Gopalan V; Stoltzfus A
    Mol Biol Evol; 2007 Oct; 24(10):2158-68. PubMed ID: 17646255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site.
    Costa M; Michel F
    EMBO J; 1999 Feb; 18(4):1025-37. PubMed ID: 10022844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding transition of a single semiflexible polyelectrolyte chain through toroidal bundling of loop structures.
    Iwaki T; Makita N; Yoshikawa K
    J Chem Phys; 2008 Aug; 129(6):065103. PubMed ID: 18715107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique group of self-splicing introns in bacteriophage T4.
    Khan AU; Ajamaluddin M; Ahmad M
    Indian J Biochem Biophys; 2001 Oct; 38(5):289-93. PubMed ID: 11886074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages.
    Pombert JF; Otis C; Lemieux C; Turmel M
    Mol Biol Evol; 2005 Sep; 22(9):1903-18. PubMed ID: 15930151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.