BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8471742)

  • 1. Modulation of parasympathetic and baroreceptor control of heart rate.
    Ferrari AU
    Cardioscience; 1993 Mar; 4(1):9-13. PubMed ID: 8471742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiovascular sensory receptors and their regulatory mechanisms.
    Fahim M
    Indian J Physiol Pharmacol; 2003 Apr; 47(2):124-46. PubMed ID: 15255616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vagal modulation and aging.
    De Meersman RE; Stein PK
    Biol Psychol; 2007 Feb; 74(2):165-73. PubMed ID: 17045727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basis of vagal efferent control of heart rate in a neotropical fish, the pacu, Piaractus mesopotamicus.
    Taylor EW; Leite CA; Florindo LH; Beläo T; Rantin FT
    J Exp Biol; 2009 Apr; 212(Pt 7):906-13. PubMed ID: 19282487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitization of cardiac vagal afferent reflexes at the sensory receptor level: an overview.
    Mark AL
    Fed Proc; 1987 Jan; 46(1):36-40. PubMed ID: 2948840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parasympathetic regulation of heart rate in rats after 5/6 nephrectomy is impaired despite functionally intact cardiac vagal innervation.
    Kuncová J; Svíglerová J; Kummer W; Rajdl D; Chottová-Dvoráková M; Tonar Z; Nalos L; Stengl M
    Nephrol Dial Transplant; 2009 Aug; 24(8):2362-70. PubMed ID: 19321759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac afferents and neurohormonal activation in congestive heart failure.
    Davila DF; Donis JH; Bellabarba G; Torres A; Casado J; Mazzei de Davila C
    Med Hypotheses; 2000 Feb; 54(2):242-53. PubMed ID: 10790760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cardiac cycle time effect revisited: temporal dynamics of the central-vagal modulation of heart rate in human reaction time tasks.
    Somsen RJ; Jennings JR; Van der Molen MW
    Psychophysiology; 2004 Nov; 41(6):941-53. PubMed ID: 15563347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Parasympathetic regulation of the heart in teleosts and factors determining the regulatory direction of the chronotropic effect].
    Kopylova GN; Krupnova EN; Samonina GE
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):936-41. PubMed ID: 2806669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in neural cardiovascular control mechanisms with ageing.
    Giannattasio C; Ferrari AU; Mancia G
    J Hypertens Suppl; 1994 Sep; 12(6):S13-7. PubMed ID: 7799104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of opposing reflex stimuli and heart rate variability to examine the effects of lipophilic and hydrophilic beta-blockers on human cardiac vagal control.
    Vaile JC; Fletcher J; Al-Ani M; Ross HF; Littler WA; Coote JH; Townend JN
    Clin Sci (Lond); 1999 Nov; 97(5):585-93; discussion 609-10. PubMed ID: 10545309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Peptidergic mechanisms in the parasympathetic regulation of the heart rate].
    Osadchiĭ OE; Pokrovskiĭ VM
    Usp Fiziol Nauk; 1993; 24(3):71-88. PubMed ID: 8368001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes in baroreceptor-sympathetic coupling during the respiratory cycle.
    Gebber GL; Das M; Barman SM
    Brain Res; 2005 Jun; 1046(1-2):216-23. PubMed ID: 15869746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions.
    Grossman P; Taylor EW
    Biol Psychol; 2007 Feb; 74(2):263-85. PubMed ID: 17081672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic regulation during postural tilt assessed by heart rate- and blood-pressure variability combined with impedance cardiography.
    Tank J; Baevsky RM; Weck M
    Wien Med Wochenschr; 1995; 145(22):616-25. PubMed ID: 8585217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Methods for assessing the autonomic nervous system in man].
    Lombardi F; Malliani A
    Cardiologia; 1994 Dec; 39(12 Suppl 1):209-13. PubMed ID: 7634269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sympathetic control of short-term heart rate variability and its pharmacological modulation.
    Elghozi JL; Julien C
    Fundam Clin Pharmacol; 2007 Aug; 21(4):337-47. PubMed ID: 17635171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nitric oxide in the regulation of cardiovascular autonomic control.
    Chowdhary S; Townend JN
    Clin Sci (Lond); 1999 Jul; 97(1):5-17. PubMed ID: 10369789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related loss of cardiac vagal preganglionic neurones in spontaneously hypertensive rats.
    Corbett EK; Mary DA; McWilliam PN; Batten TF
    Exp Physiol; 2007 Nov; 92(6):1005-13. PubMed ID: 17644704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional changes in baroreceptor afferent, central and efferent components of the baroreflex circuitry in type 1 diabetic mice (OVE26).
    Gu H; Epstein PN; Li L; Wurster RD; Cheng ZJ
    Neuroscience; 2008 Mar; 152(3):741-52. PubMed ID: 18328631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.