These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 8471861)
1. Evaluation of microbial loads of Bacillus subtilis spores on penicylinders. Danielson JW J AOAC Int; 1993; 76(2):355-60. PubMed ID: 8471861 [TBL] [Abstract][Full Text] [Related]
2. Recovery and sporicidal resistance of various B. subtilis spore preparations on porcelain penicylinders compared with results from AOAC test methods. Danielson JW; Zuroski KE; Twohy C; Thompson RD; Bell E; McClure F J AOAC Int; 2000; 83(1):145-55. PubMed ID: 10693016 [TBL] [Abstract][Full Text] [Related]
3. Sporicidal testing of commercial germicides using a chemical standard and a calibrated bioindicator. Danielson JW; Thompson RD; Bell E J AOAC Int; 1999; 82(1):151-9. PubMed ID: 10028684 [TBL] [Abstract][Full Text] [Related]
4. Modification to the AOAC Sporicidal Activity of Disinfectants Test (Method 966.04): collaborative study. Tomasino SF; Hamilton MA J AOAC Int; 2006; 89(5):1373-97. PubMed ID: 17042190 [TBL] [Abstract][Full Text] [Related]
5. Culture age and drying time as variables of the AOAC Sporicidal Test. Miner NA; Taylor MA; Bernal SE; Harris VL; Sichinga MJ J AOAC Int; 2001; 84(4):1159-63. PubMed ID: 11501918 [TBL] [Abstract][Full Text] [Related]
6. Use of alternative carrier materials in AOAC Official Method 2008.05, efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface, quantitative three-step method. Tomasino SF; Rastogi VK; Wallace L; Smith LS; Hamilton MA; Pines RM J AOAC Int; 2010; 93(1):259-76. PubMed ID: 20334188 [TBL] [Abstract][Full Text] [Related]
7. Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. Oulé MK; Quinn K; Dickman M; Bernier AM; Rondeau S; De Moissac D; Boisvert A; Diop L J Med Microbiol; 2012 Oct; 61(Pt 10):1421-1427. PubMed ID: 22871428 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of penicylinders used in disinfectant testing: bacterial attachment and surface texture. Cole EC; Rutala WA; Carson JL J Assoc Off Anal Chem; 1987; 70(5):903-6. PubMed ID: 3119561 [TBL] [Abstract][Full Text] [Related]
9. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas. Li YJ; Zhu N; Jia HQ; Wu JH; Yi Y; Qi JC J Zhejiang Univ Sci B; 2012 Apr; 13(4):254-60. PubMed ID: 22467366 [TBL] [Abstract][Full Text] [Related]
10. Impact of standard test protocols on sporicidal efficacy. Wesgate R; Rauwel G; Criquelion J; Maillard JY J Hosp Infect; 2016 Jul; 93(3):256-62. PubMed ID: 27133281 [TBL] [Abstract][Full Text] [Related]
11. Sporicidal efficacy of thermal-sprayed copper alloy coating. Shafaghi R; Mostaghimi J; Pershin V; Ringuette M Can J Microbiol; 2017 May; 63(5):384-391. PubMed ID: 28177787 [TBL] [Abstract][Full Text] [Related]
12. Investigations on the sporicidal and fungicidal activity of disinfectants. Lensing HH; Oei HL Zentralbl Bakteriol Mikrobiol Hyg B; 1985 Dec; 181(6):487-95. PubMed ID: 3938146 [TBL] [Abstract][Full Text] [Related]
13. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants]. Votava M; Slitrová B Epidemiol Mikrobiol Imunol; 2009 Feb; 58(1):36-42. PubMed ID: 19358452 [TBL] [Abstract][Full Text] [Related]
14. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants. March JK; Pratt MD; Lowe CW; Cohen MN; Satterfield BA; Schaalje B; O'Neill KL; Robison RA Microbiologyopen; 2015 Oct; 4(5):764-73. PubMed ID: 26185111 [TBL] [Abstract][Full Text] [Related]
15. Modified AOAC three step method (officialmethod 2008.05): consolidation of fractions B and C. Rastogi VK; Smith LS; Wallace L; Tomasino SF J AOAC Int; 2013; 96(5):947-50. PubMed ID: 24282930 [TBL] [Abstract][Full Text] [Related]
16. Effects of Electrolyzed Oxidizing Water on Inactivation of Bacillus subtilis and Bacillus cereus Spores in Suspension and on Carriers. Zhang C; Li B; Jadeja R; Hung YC J Food Sci; 2016 Jan; 81(1):M144-9. PubMed ID: 26642381 [TBL] [Abstract][Full Text] [Related]
17. Studies on the mechanisms of the sporicidal action of ortho-phthalaldehyde. Cabrera-Martinez RM; Setlow B; Setlow P J Appl Microbiol; 2002; 92(4):675-80. PubMed ID: 11966908 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of carriers used in the test methods of the Association of Official Analytical Chemists. Ascenzi JM; Ezzell RJ; Wendt TM Appl Environ Microbiol; 1986 Jan; 51(1):91-4. PubMed ID: 3513702 [TBL] [Abstract][Full Text] [Related]
19. Determining the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard nonporous surface using the quantitative three step method: collaborative study. Tomasino SF; Pines RM; Cottrill MP; Hamilton MA J AOAC Int; 2008; 91(4):833-52. PubMed ID: 18727544 [TBL] [Abstract][Full Text] [Related]
20. In vitro production of Clostridium difficile spores for use in the efficacy evaluation of disinfectants: a precollaborative investigation. Hasan JA; Japal KM; Christensen ER; Samalot-Freire LC J AOAC Int; 2011; 94(1):259-72. PubMed ID: 21391503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]