BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8471861)

  • 21. Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation.
    Galeano B; Korff E; Nicholson WL
    Appl Environ Microbiol; 2003 Jul; 69(7):4329-31. PubMed ID: 12839825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of peracetic acid sanitizers efficiency against spores isolated from spoiled cans in suspension and on stainless steel surfaces.
    André S; Hédin S; Remize F; Zuber F
    J Food Prot; 2012 Feb; 75(2):371-5. PubMed ID: 22289600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of Perasafe and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces.
    Block C
    J Hosp Infect; 2004 Jun; 57(2):144-8. PubMed ID: 15183245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The sporicidal activity of chemical products tested in our laboratory on Bacillus subtilis spores].
    Ghiţescu E; Popa R
    Bacteriol Virusol Parazitol Epidemiol; 1997; 42(3):159-63. PubMed ID: 9417287
    [No Abstract]   [Full Text] [Related]  

  • 25. Inactivation of Clostridium difficile spores by disinfectants.
    Rutala WA; Gergen MF; Weber DJ
    Infect Control Hosp Epidemiol; 1993 Jan; 14(1):36-9. PubMed ID: 8432966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates.
    Rose R; Setlow B; Monroe A; Mallozzi M; Driks A; Setlow P
    J Appl Microbiol; 2007 Sep; 103(3):691-9. PubMed ID: 17714403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: relevance to environmental control.
    Perez J; Springthorpe VS; Sattar SA
    Am J Infect Control; 2005 Aug; 33(6):320-5. PubMed ID: 16061137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Ethylene oxide sterilization. I. Influence of the sporulation medium on the resistance of spores of Bacillus subtilis var. niger].
    Pinto Tde J; Saito T
    Rev Saude Publica; 1992 Dec; 26(6):379-83. PubMed ID: 1342528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis.
    Piktel E; Pogoda K; Roman M; Niemirowicz K; Tokajuk G; Wróblewska M; Szynaka B; Kwiatek WM; Savage PB; Bucki R
    Sci Rep; 2017 Mar; 7():44452. PubMed ID: 28294162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AOAC method 966.04: preliminary evaluation of cooked meat medium with manganese sulfate for the cultivation of Clostridium sporogenes: precollaborative study.
    Tomasino SF; Samalot-Freire LC
    J AOAC Int; 2007; 90(3):825-33. PubMed ID: 17580636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An effective sporicidal reagent against Bacillus subtilis spores.
    Kida N; Mochizuki Y; Taguchi F
    Microbiol Immunol; 2003; 47(4):279-83. PubMed ID: 12801065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of disinfecting procedures for aseptic transfer in hospital pharmacy departments.
    Mehmi M; Marshall LJ; Lambert PA; Smith JC
    PDA J Pharm Sci Technol; 2009; 63(2):123-38. PubMed ID: 19634351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The nature and site of biocide-induced sublethal injury in Bacillus subtilis spores.
    Williams ND; Russell AD
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):277-80. PubMed ID: 1490611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of AISI Type 304 stainless steel as a suitable surface material for evaluating the efficacy of peracetic acid-based disinfectants against Clostridium difficile spores.
    Black E; Owens K; Staub R; Li J; Mills K; Valenstein J; Hilgren J
    PLoS One; 2017; 12(10):e0187074. PubMed ID: 29065168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of a novel, rapid-acting, sterilizing solution at room temperature.
    Hobson DW; Seal LA
    Am J Infect Control; 2000 Oct; 28(5):370-5. PubMed ID: 11029137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic sporicidal effect of ethanol on a combination of orthophthalaldehyde and didecyldimethylammonium chloride.
    Yuan G; Wei Q; Tie J; Wang C; Rao L; Zhang W
    Lett Appl Microbiol; 2014 Sep; 59(3):272-7. PubMed ID: 24739063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The activity of glutaraldehyde against Clostridium difficile.
    Dyas A; Das BC
    J Hosp Infect; 1985 Mar; 6(1):41-5. PubMed ID: 2859321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modified quantitative association of official analytical chemists sporicidal test for liquid chemical germicides.
    Miner N; Armstrong M; Carr CD; Maida B; Schlotfeld L
    Appl Environ Microbiol; 1997 Aug; 63(8):3304-7. PubMed ID: 16535679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the Impact of Germination and Sporulation Conditions on the Adhesion of Bacillus Spores to Glass and Stainless Steel by Fluid Dynamic Gauging.
    Xu Zhou K; Li N; Christie G; Wilson DI
    J Food Sci; 2017 Nov; 82(11):2614-2625. PubMed ID: 29125641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of sporicidal activities of selected environmental surface disinfectants: carrier tests with the spores of Clostridium difficile and its surrogates.
    Omidbakhsh N
    Am J Infect Control; 2010 Nov; 38(9):718-22. PubMed ID: 21034981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.