These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Opponency of red- and green-sensitive cone mechanisms in field spectral sensitivity measurements. Foster DH J Physiol; 1980 Jan; 298():21P. PubMed ID: 7359393 [No Abstract] [Full Text] [Related]
23. Identification of the R-G-cone difference signal in the corneal electroretinogram of the primate. Donovan WJ; Baron WS J Opt Soc Am; 1982 Aug; 72(8):1014-20. PubMed ID: 7131114 [No Abstract] [Full Text] [Related]
24. Effects of prolonged weak light illumination on the b-wave and the ganglion cell response of the frog retina. Ando H Kobe J Med Sci; 1981 Oct; 27(5):189-200. PubMed ID: 6975857 [No Abstract] [Full Text] [Related]
25. Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina. Liu PC; Chiao CC Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3388-95. PubMed ID: 17591913 [TBL] [Abstract][Full Text] [Related]
26. The fundamental plan of the retina. Masland RH Nat Neurosci; 2001 Sep; 4(9):877-86. PubMed ID: 11528418 [TBL] [Abstract][Full Text] [Related]
27. Color coding in primate retina. Gouras P; Zrenner E Vision Res; 1981; 21(11):1591-8. PubMed ID: 7336591 [No Abstract] [Full Text] [Related]
28. Connections of diffuse bipolar cells in primate retina are biased against S-cones. Lee SC; Grünert U J Comp Neurol; 2007 May; 502(1):126-40. PubMed ID: 17335043 [TBL] [Abstract][Full Text] [Related]
30. Colour vision. A patchwork of cones. Wässle H Nature; 1999 Feb; 397(6719):473, 475. PubMed ID: 10028963 [No Abstract] [Full Text] [Related]
31. Electrical coupling between red and green cones in primate retina. Hornstein EP; Verweij J; Schnapf JL Nat Neurosci; 2004 Jul; 7(7):745-50. PubMed ID: 15208634 [TBL] [Abstract][Full Text] [Related]
32. Cone opponency in the near peripheral retina. Murray IJ; Parry NR; McKeefry DJ Vis Neurosci; 2006; 23(3-4):503-7. PubMed ID: 16961987 [TBL] [Abstract][Full Text] [Related]
33. Vision. Why do colours fade at the edges? Derrington A Nature; 2001 Apr; 410(6831):886-7. PubMed ID: 11309602 [No Abstract] [Full Text] [Related]
34. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). Bailes HJ; Robinson SR; Trezise AE; Collin SP J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259 [TBL] [Abstract][Full Text] [Related]
35. Red photoreceptor in butterflies. Swihart SL; Gordon WC Nature; 1971 May; 231(5298):126-7. PubMed ID: 4930095 [No Abstract] [Full Text] [Related]
36. Effects on the electroretinogram of change in the ionic composition of the fluid bathing the isolated avian and mammalian retina. Arden GB; Ernst W J Physiol; 1969 Apr; 201(2):58P. PubMed ID: 5780559 [No Abstract] [Full Text] [Related]
37. The chromatic organization of the goldfish cone mosaic. Marc RE; Sperling HG Vision Res; 1976; 16(11):1211-24. PubMed ID: 1006992 [No Abstract] [Full Text] [Related]
38. The multifocal pattern electroretinogram (mfPERG) and cone-isolating stimuli. Langrová H; Jägle H; Zrenner E; Kurtenbach A Vis Neurosci; 2007; 24(6):805-16. PubMed ID: 18093368 [TBL] [Abstract][Full Text] [Related]
39. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321 [TBL] [Abstract][Full Text] [Related]
40. Cone spectral sensitivity determined with an ERG method. van Norren D Vision Res; 1971 Oct; 11(10):1220-1. PubMed ID: 5156831 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]