These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8472907)

  • 1. Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae.
    Perkins J; Gadd GM
    FEMS Microbiol Lett; 1993 Mar; 107(2-3):255-60. PubMed ID: 8472907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Distribution of potassium and sodium in the vacuole and cytoplasm of Saccharomyces cerevisiae].
    Ortega MD
    Microbiologia; 1988 Feb; 4(1):61-4. PubMed ID: 3077986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance.
    Zimmermannova O; Salazar A; Sychrova H; Ramos J
    FEMS Yeast Res; 2015 Jun; 15(4):fov029. PubMed ID: 26019147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild-type and vacuolar mutants.
    Herrera R; Álvarez MC; Gelis S; Ramos J
    Biochem J; 2013 Sep; 454(3):525-32. PubMed ID: 23829444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural analysis of HNE-treated Saccharomyces cerevisiae cells reveals fragmentation of the vacuole and an accumulation of lipids in the cytosol.
    Wonisch W; Zellnig G; Kohlwein SD; Schaur RJ; Bilinski T; Tatzber F; Esterbauer H
    Cell Biochem Funct; 2001 Mar; 19(1):59-64. PubMed ID: 11223872
    [No Abstract]   [Full Text] [Related]  

  • 6. Activation of the potassium uptake system during fermentation in Saccharomyces cerevisiae.
    Ramos J; Haro R; Alijo R; Rodríguez-Navarro A
    J Bacteriol; 1992 Mar; 174(6):2025-7. PubMed ID: 1532175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ study of K+ transport into the vacuole of Saccharomyces cerevisiae.
    Martínez-Muñoz GA; Peña A
    Yeast; 2005 Jul; 22(9):689-704. PubMed ID: 16034802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast.
    Yadav AK; Shankar A; Jha SK; Kanwar P; Pandey A; Pandey GK
    Sci Rep; 2015 Nov; 5():17117. PubMed ID: 26607171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae.
    Csutora P; Strassz A; Boldizsár F; Németh P; Sipos K; Aiello DP; Bedwell DM; Miseta A
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C58-67. PubMed ID: 15703203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media].
    Iurinskaia VE; Moshkov AV; Goriachaia TS; Vereninov AA
    Tsitologiia; 2013; 55(10):703-12. PubMed ID: 25509124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional and subcellular localization of Li+ and other cations in the rat brain following long-term lithium administration.
    Lam HR; Christensen S
    J Neurochem; 1992 Oct; 59(4):1372-80. PubMed ID: 1402889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae.
    Gómez MJ; Luyten K; Ramos J
    FEMS Microbiol Lett; 1996 Jan; 135(2-3):157-60. PubMed ID: 8595852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Agalakova NI; Ivanova TI
    Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+-mediated piezoprotection in Rhodotorula rubra.
    Aertsen A; Masschalck B; Wuytack EY; Michiels CW
    Extremophiles; 2003 Dec; 7(6):499-504. PubMed ID: 14520537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae.
    Abe F; Horikoshi K
    FEMS Microbiol Lett; 1995 Aug; 130(2-3):307-12. PubMed ID: 7649454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of stimulation of Ca2+ uptake by miconazole and ethidium bromide in yeasts: role of vacuoles in Ca2+ detoxification.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1985; 44(177):51-66. PubMed ID: 2870412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control.
    Messenguy F; Colin D; ten Have JP
    Eur J Biochem; 1980 Jul; 108(2):439-47. PubMed ID: 6997042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultracytochemistry of the secretory pathway in Saccharomyces cerevisiae defies the established pathway model.
    Vorísek J
    Electron Microsc Rev; 1991; 4(2):377-400. PubMed ID: 1932588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular cation transport studied by 6/7Li and 23Na NMR in a porous Mo132 Keplerate type nano-capsule as model system.
    Rehder D; Haupt ET; Müller A
    Magn Reson Chem; 2008; 46 Suppl 1():S24-9. PubMed ID: 18853473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification.
    Ramsay LM; Gadd GM
    FEMS Microbiol Lett; 1997 Jul; 152(2):293-8. PubMed ID: 9231423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.