These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8472915)

  • 41. Chloroperoxidase-catalyzed oxidation of N-methyl-4-chloroaniline.
    Corbett MD; Chipko BR
    Experientia; 1979 Sep; 35(9):1150-1. PubMed ID: 488260
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of CL-20 by white-rot fungi.
    Fournier D; Monteil-Rivera F; Halasz A; Bhatt M; Hawari J
    Chemosphere; 2006 Mar; 63(1):175-81. PubMed ID: 16112713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Further studies on the inactivation by sodium azide of lignin peroxidase from Phanerochaete chrysosporium.
    Tatarko M; Bumpus JA
    Arch Biochem Biophys; 1997 Mar; 339(1):200-9. PubMed ID: 9056250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Comparison of lignocellulolytic enzyme profiles secreted by Panus conchatus and Phanerochaete chrysosporium during solid state cultures].
    Wang C; Yu H; Fu S
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):127-31. PubMed ID: 12555416
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ring fission of anthracene by a eukaryote.
    Hammel KE; Green B; Gai WZ
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10605-8. PubMed ID: 1961727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification and characterization of a novel lignin peroxidase from white-rot fungus Phanerochaete sordida YK-624.
    Sugiura M; Hirai H; Nishida T
    FEMS Microbiol Lett; 2003 Jul; 224(2):285-90. PubMed ID: 12892894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aromatic nitroreductase from the basidiomycete Phanerochaete chrysosporium.
    Rieble S; Joshi DK; Gold MH
    Biochem Biophys Res Commun; 1994 Nov; 205(1):298-304. PubMed ID: 7999039
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases.
    Liers C; Pecyna MJ; Kellner H; Worrich A; Zorn H; Steffen KT; Hofrichter M; Ullrich R
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5839-49. PubMed ID: 23111597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exocellular and intracellular beta-glucosidase produced in ligninolytic culture of Phanerochaete chrysosporium.
    Jafelice LR; Wiseman A; Goldfarb P
    Biochem Soc Trans; 1990 Aug; 18(4):644-5. PubMed ID: 2125946
    [No Abstract]   [Full Text] [Related]  

  • 50. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium.
    Bogan BW; Lamar RT
    Appl Environ Microbiol; 1995 Jul; 61(7):2631-5. PubMed ID: 7618875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chloroperoxidase-catalysed oxidation of 4-chloroaniline to 4-chloronitrosobenze.
    Corbett MD; Chipko BR; Baden DG
    Biochem J; 1978 Nov; 175(2):353-60. PubMed ID: 743200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lignin degradation by Phanerochaete chrysosporium in hyperbaric oxygen.
    Reid ID; Seifert KA
    Can J Microbiol; 1980 Sep; 26(9):1168-71. PubMed ID: 7459728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fungal degradation of organophosphorus insecticides.
    Bumpus JA; Kakar SN; Coleman RD
    Appl Biochem Biotechnol; 1993; 39-40():715-26. PubMed ID: 7686734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of mercury on the white rot fungus Phanerochaete chrysosporium.
    Dhawale SS; Lane AC; Dhawale SW
    Bull Environ Contam Toxicol; 1996 May; 56(5):825-32. PubMed ID: 8661868
    [No Abstract]   [Full Text] [Related]  

  • 55. Biochemical transformations of herbicide-derived anilines: requirements of molecular configuration.
    Bordeleau LM; Bartha R
    Can J Microbiol; 1972 Dec; 18(12):1873-82. PubMed ID: 4675330
    [No Abstract]   [Full Text] [Related]  

  • 56. Nylon biodegradation by lignin-degrading fungi.
    Deguchi T; Kakezawa M; Nishida T
    Appl Environ Microbiol; 1997 Jan; 63(1):329-31. PubMed ID: 8979361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms and pathways of aniline elimination from aquatic environments.
    Lyons CD; Katz S; Bartha R
    Appl Environ Microbiol; 1984 Sep; 48(3):491-6. PubMed ID: 6497369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium.
    Bar-Lev SS; Kirk TK
    Biochem Biophys Res Commun; 1981 Mar; 99(2):373-8. PubMed ID: 7236274
    [No Abstract]   [Full Text] [Related]  

  • 59. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water.
    Emtiazi G; Satarii M; Mazaherion F
    Water Res; 2001 Apr; 35(5):1219-24. PubMed ID: 11268842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial oxidation of 4-chloroaniline.
    Kaufman DD; Plimmer JR; Klingebiel UI
    J Agric Food Chem; 1973; 21(1):127-32. PubMed ID: 4682327
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.