These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8472917)

  • 41. Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage.
    Wang L; Gutek A; Grewal S; Michel FC; Yu Z
    Lett Appl Microbiol; 2015 Sep; 61(3):245-51. PubMed ID: 26031793
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.
    Lochmeyer C; Koch J; Fuchs G
    J Bacteriol; 1992 Jun; 174(11):3621-8. PubMed ID: 1592816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Utilization of 3-chlorobenzoic acid by a mixed culture of microorganisms].
    Zaĭtsev GM
    Mikrobiologiia; 1988; 57(4):550-3. PubMed ID: 3211007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defining a structural and kinetic rationale for paralogous copies of phenylacetate-CoA ligases from the cystic fibrosis pathogen Burkholderia cenocepacia J2315.
    Law A; Boulanger MJ
    J Biol Chem; 2011 Apr; 286(17):15577-85. PubMed ID: 21388965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli.
    Fernández C; Díaz E; García JL
    Environ Microbiol Rep; 2014 Jun; 6(3):239-50. PubMed ID: 24983528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG; de Roo G; O'Connor KE
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid.
    Kim J; Jeon CO; Park W
    J Microbiol Biotechnol; 2007 Oct; 17(10):1727-32. PubMed ID: 18156794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The catabolism and heterotrophic nitrification of the siderophore deferrioxamine B.
    Castignetti D; Siddiqui AS
    Biol Met; 1990; 3(3-4):197-203. PubMed ID: 2073460
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Styrene lower catabolic pathway in Pseudomonas fluorescens ST: identification and characterization of genes for phenylacetic acid degradation.
    Di Gennaro P; Ferrara S; Ronco I; Galli E; Sello G; Papacchini M; Bestetti G
    Arch Microbiol; 2007 Aug; 188(2):117-25. PubMed ID: 17377771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Detoxification of high concentrations of trinitrotoluene by bacteria].
    Solianikova IP; Baskunov BP; Baboshin MA; Saralov AI; Golovleva LA
    Prikl Biokhim Mikrobiol; 2012; 48(1):27-34. PubMed ID: 22567882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [On the growth of various Enterobacteriaceae, Pseudomonas aeruginosa and Alkaligenes spec. in distilled water, de-ionized water, tap water, and mineral salt solution (author's transl)].
    Botzenhart K; Kufferath R
    Zentralbl Bakteriol Orig B; 1976 Dec; 163(5-6):470-85. PubMed ID: 828367
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons.
    Tobin KM; O'Connor KE
    FEMS Microbiol Lett; 2005 Dec; 253(1):111-8. PubMed ID: 16260095
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The metabolism of phenylacetic acid by a Pseudomonas.
    Blakley ER; Kurz W; Halvorson H; Simpson FJ
    Can J Microbiol; 1967 Feb; 13(2):147-57. PubMed ID: 4382429
    [No Abstract]   [Full Text] [Related]  

  • 55. Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds.
    Navarro-Llorens JM; Patrauchan MA; Stewart GR; Davies JE; Eltis LD; Mohn WW
    J Bacteriol; 2005 Jul; 187(13):4497-504. PubMed ID: 15968060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization and identification of gram-negative, nonfermentative bacteria.
    Oberhofer TR; Rowen JW; Cunningham GF
    J Clin Microbiol; 1977 Feb; 5(2):208-20. PubMed ID: 845246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measuring the concentrations of metabolites in bacteria.
    Cook AM; Urban E; Schlegel HG
    Anal Biochem; 1976 May; 72():191-201. PubMed ID: 782284
    [No Abstract]   [Full Text] [Related]  

  • 58. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.
    Klages U; Markus A; Lingens F
    J Bacteriol; 1981 Apr; 146(1):64-8. PubMed ID: 7217006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Properties and roles of bacterial symbionts of polyvinyl alcohol-utilizing mixed cultures.
    Shimao M; Saimoto H; Kato N; Sakazawa C
    Appl Environ Microbiol; 1983 Sep; 46(3):605-10. PubMed ID: 6639015
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum.
    Koetsier MJ; Jekel PA; van den Berg MA; Bovenberg RA; Janssen DB
    Biochem J; 2009 Jan; 417(2):467-76. PubMed ID: 18834333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.