These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8472951)
1. Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli. Xie QW; Tabor CW; Tabor H Gene; 1993 Apr; 126(1):115-7. PubMed ID: 8472951 [TBL] [Abstract][Full Text] [Related]
2. Spermidine synthase of Escherichia coli: localization of the speE gene. Tabor CW; Tabor H; Xie QW Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6040-4. PubMed ID: 3526348 [TBL] [Abstract][Full Text] [Related]
3. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae. Tabor CW; Tabor H; Tyagi AK; Cohn MS Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461 [TBL] [Abstract][Full Text] [Related]
4. The genetics of polyamine synthesis in Neurospora crassa. Pitkin J; Davis RH Arch Biochem Biophys; 1990 May; 278(2):386-91. PubMed ID: 2139316 [TBL] [Abstract][Full Text] [Related]
5. Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the speED operon. Xie QW; Tabor CW; Tabor H J Bacteriol; 1989 Aug; 171(8):4457-65. PubMed ID: 2666401 [TBL] [Abstract][Full Text] [Related]
6. Spermidine biosynthesis in Saccharomyces cerevisiae. Biosynthesis and processing of a proenzyme form of S-adenosylmethionine decarboxylase. Kashiwagi K; Taneja SK; Liu TY; Tabor CW; Tabor H J Biol Chem; 1990 Dec; 265(36):22321-8. PubMed ID: 2266128 [TBL] [Abstract][Full Text] [Related]
7. Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis. Tabor CW; Tabor H; Hafner EW J Biol Chem; 1978 May; 253(10):3671-6. PubMed ID: 348695 [TBL] [Abstract][Full Text] [Related]
8. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation. Green R; Hanfrey CC; Elliott KA; McCloskey DE; Wang X; Kanugula S; Pegg AE; Michael AJ Mol Microbiol; 2011 Aug; 81(4):1109-24. PubMed ID: 21762220 [TBL] [Abstract][Full Text] [Related]
9. Spermidine biosynthesis in Saccharomyces cerevisae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Hamasaki-Katagiri N; Tabor CW; Tabor H Gene; 1997 Mar; 187(1):35-43. PubMed ID: 9073064 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic comparison of samdc and spe mutants reveals complex relationships of polyamine metabolism in Ustilago maydis. Valdés-Santiago L; Cervantes-Chávez JA; Winkler R; León-Ramírez CG; Ruiz-Herrera J Microbiology (Reading); 2012 Mar; 158(Pt 3):674-684. PubMed ID: 22222500 [TBL] [Abstract][Full Text] [Related]
11. Polyamines. Tabor CW; Tabor H Annu Rev Biochem; 1984; 53():749-90. PubMed ID: 6206782 [No Abstract] [Full Text] [Related]
12. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. Hanfrey CC; Pearson BM; Hazeldine S; Lee J; Gaskin DJ; Woster PM; Phillips MA; Michael AJ J Biol Chem; 2011 Dec; 286(50):43301-12. PubMed ID: 22025614 [TBL] [Abstract][Full Text] [Related]
13. The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase. Tabor CW; Tabor H J Biol Chem; 1987 Nov; 262(33):16037-40. PubMed ID: 3316212 [TBL] [Abstract][Full Text] [Related]
14. The presence of an active S-adenosylmethionine decarboxylase gene increases the growth defect observed in Saccharomyces cerevisiae mutants unable to synthesize putrescine, spermidine, and spermine. Balasundaram D; Xie QW; Tabor CW; Tabor H J Bacteriol; 1994 Oct; 176(20):6407-9. PubMed ID: 7929015 [TBL] [Abstract][Full Text] [Related]
15. Effect of Spermidine on Biofilm Formation in Escherichia coli K-12. Thongbhubate K; Nakafuji Y; Matsuoka R; Kakegawa S; Suzuki H J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33685971 [TBL] [Abstract][Full Text] [Related]
16. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia. Li B; Kim SH; Zhang Y; Hanfrey CC; Elliott KA; Ealick SE; Michael AJ Mol Microbiol; 2015 Sep; 97(5):791-807. PubMed ID: 25994085 [TBL] [Abstract][Full Text] [Related]
17. Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase. Tabor CW Med Biol; 1981 Dec; 59(5-6):272-8. PubMed ID: 7040829 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of a Novel Bioactive Metabolite of Spermidine from Zou D; Li L; Min Y; Ji A; Liu Y; Wei X; Wang J; Wen Z J Agric Food Chem; 2021 Jan; 69(1):267-274. PubMed ID: 33356220 [TBL] [Abstract][Full Text] [Related]
19. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme. Persson K; Aslund L; Grahn B; Hanke J; Heby O Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):527-37. PubMed ID: 9677309 [TBL] [Abstract][Full Text] [Related]
20. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Tabor CW; Tabor H Annu Rev Biochem; 1976; 45():285-306. PubMed ID: 786151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]