These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8473197)

  • 1. Spatial analysis of intranuclear human repetitive DNA regions by in situ hybridization and digital fluorescence microscopy.
    van Dekken H; Hulspas R
    Histochem J; 1993 Mar; 25(3):173-82. PubMed ID: 8473197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].
    Bogomolov AG; Karamysheva TV; Rubtsov NB
    Mol Biol (Mosk); 2014; 48(6):881-90. PubMed ID: 25845229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of fluorescence in situ hybridization signals by image cytometry.
    Nederlof PM; van der Flier S; Verwoerd NP; Vrolijk J; Raap AK; Tanke HJ
    Cytometry; 1992; 13(8):846-52. PubMed ID: 1459002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-painting of human metaphase spreads using a chromosome-specific, repeat-depleted DNA library probe.
    Durm M; Schüssler L; Münch H; Craig J; Ludwig H; Hausmann M; Cremer C
    Biotechniques; 1998 May; 24(5):820-5. PubMed ID: 9591132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of aneuploidy in interphase nuclei from non-small cell lung carcinomas by fluorescence in situ hybridization using chromosome-specific repetitive DNA probes.
    Taguchi T; Zhou JY; Feder M; Litwin S; Klein-Szanto AJ; Testa JR
    Cancer Genet Cytogenet; 1996 Jul; 89(2):120-5. PubMed ID: 8697416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of ribosomal and telomeric DNA sequences in intact plant nuclei by in-situ hybridization and three-dimensional optical microscopy.
    Rawlins DJ; Shaw PJ
    J Microsc; 1990 Jan; 157(Pt 1):83-9. PubMed ID: 2299663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of DNA in situ hybridization and immunocytochemical detection of nucleolar proteins: a contribution to the functional mapping of the human genome by fluorescence microscopy.
    Leger I; Robert-Nicoud M; Brugal G
    J Histochem Cytochem; 1994 Feb; 42(2):149-54. PubMed ID: 8288860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of fluorescence in situ hybridization (FISH): current status and future prospects.
    Nath J; Johnson KL
    Biotech Histochem; 2000 Mar; 75(2):54-78. PubMed ID: 10941509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84.
    Cremer T; Landegent J; Brückner A; Scholl HP; Schardin M; Hager HD; Devilee P; Pearson P; van der Ploeg M
    Hum Genet; 1986 Dec; 74(4):346-52. PubMed ID: 3793097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes.
    Jiang J; Gill BS; Wang GL; Ronald PC; Ward DC
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4487-91. PubMed ID: 7753830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid interphase and metaphase assessment of specific chromosomal changes in neuroectodermal tumor cells by in situ hybridization with chemically modified DNA probes.
    Cremer T; Tesin D; Hopman AH; Manuelidis L
    Exp Cell Res; 1988 Jun; 176(2):199-220. PubMed ID: 3288483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome organisation in the murine sperm nucleus.
    Jennings C; Powell D
    Zygote; 1995 May; 3(2):123-31. PubMed ID: 7582914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple method for fluorescence DNA in situ hybridization to squashed chromosomes.
    Larracuente AM; Ferree PM
    J Vis Exp; 2015 Jan; (95):52288. PubMed ID: 25591075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic correction of the interfering effect of unsuppressed interspersed repetitive sequences in comparative genomic hybridization analysis.
    Kirchhoff M; Gerdes T; Maahr J; Rose H; Lundsteen C
    Cytometry; 1997 Jun; 28(2):130-4. PubMed ID: 9181302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a multicolor chromosome bar code for the entire human karyotype by fluorescence in situ hybridization.
    Müller S; Rocchi M; Ferguson-Smith MA; Wienberg J
    Hum Genet; 1997 Aug; 100(2):271-8. PubMed ID: 9254863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes.
    Haaf T; Ward DC
    Hum Mol Genet; 1994 May; 3(5):697-709. PubMed ID: 8081355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of inter- and intra-nuclear variation of fluorescence in situ hybridization signals.
    Nederlof PM; van der Flier S; Raap AK; Tanke HJ
    Cytometry; 1992; 13(8):831-8. PubMed ID: 1459000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands.
    Korenberg JR; Rykowski MC
    Cell; 1988 May; 53(3):391-400. PubMed ID: 3365767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.