BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8473341)

  • 1. Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline.
    Brown ED; Wood JM
    J Biol Chem; 1993 Apr; 268(12):8972-9. PubMed ID: 8473341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.
    Becker DF; Thomas EA
    Biochemistry; 2001 Apr; 40(15):4714-21. PubMed ID: 11294639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
    Zhang W; Zhou Y; Becker DF
    Biochemistry; 2004 Oct; 43(41):13165-74. PubMed ID: 15476410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium.
    Surber MW; Maloy S
    Biochim Biophys Acta; 1999 Sep; 1421(1):5-18. PubMed ID: 10561467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of proline analog binding on the spectroscopic and redox properties of PutA.
    Zhu W; Gincherman Y; Docherty P; Spilling CD; Becker DF
    Arch Biochem Biophys; 2002 Dec; 408(1):131-6. PubMed ID: 12485611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding.
    Zhang W; Zhang M; Zhu W; Zhou Y; Wanduragala S; Rewinkel D; Tanner JJ; Becker DF
    Biochemistry; 2007 Jan; 46(2):483-91. PubMed ID: 17209558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical and functional characterization of the proline dehydrogenase domain of the PutA flavoprotein from Escherichia coli.
    Vinod MP; Bellur P; Becker DF
    Biochemistry; 2002 May; 41(20):6525-32. PubMed ID: 12009917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein.
    Ling M; Allen SW; Wood JM
    J Mol Biol; 1994 Nov; 243(5):950-6. PubMed ID: 7966312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator.
    Ostrovsky de Spicer P; Maloy S
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4295-8. PubMed ID: 8483946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
    Moxley MA; Becker DF
    Biochemistry; 2012 Jan; 51(1):511-20. PubMed ID: 22148640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli.
    Zhou Y; Zhu W; Bellur PS; Rewinkel D; Becker DF
    Amino Acids; 2008 Nov; 35(4):711-8. PubMed ID: 18324349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
    Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ
    Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline.
    Muro-Pastor AM; Maloy S
    J Biol Chem; 1995 Apr; 270(17):9819-27. PubMed ID: 7730362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein.
    Moxley MA; Zhang L; Christgen S; Tanner JJ; Becker DF
    Biochemistry; 2017 Jun; 56(24):3078-3088. PubMed ID: 28558236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.