These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8473603)

  • 1. Analyses of Mössbauer mechanical measurements indicate that the cochlea is mechanically active.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Mar; 93(3):1502-15. PubMed ID: 8473603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic enhancement of electrically evoked otoacoustic emissions reflects basilar membrane tuning: a model.
    Xue S; Mountain DC; Hubbard AE
    Hear Res; 1995 Nov; 91(1-2):93-100. PubMed ID: 8647730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig.
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1996 Mar; 99(3):1556-65. PubMed ID: 8819852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basilar membrane velocity in a cochlea with a modified organ of Corti.
    Eze N; Olson ES
    Biophys J; 2011 Feb; 100(4):858-67. PubMed ID: 21320429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.
    Shera CA; Cooper NP
    J Acoust Soc Am; 2013 Apr; 133(4):2224-39. PubMed ID: 23556591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of distortion product otoacoustic emission measurements. II. Estimating tuning characteristics using three stimulus tones.
    Mills DM
    J Acoust Soc Am; 1998 Jan; 103(1):507-23. PubMed ID: 9440336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases.
    Robles L; Ruggero MA; Rich NC
    J Acoust Soc Am; 1986 Nov; 80(5):1364-74. PubMed ID: 3782615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further tests of the local nonlinear interaction-based mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions.
    Killan EC; Lutman ME; Thyer NJ
    Hear Res; 2015 Jan; 319():12-24. PubMed ID: 25446244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear delays measured with amplitude-modulated tone-burst-evoked OAEs.
    Goodman SS; Withnell RH; De Boer E; Lilly DJ; Nuttall AL
    Hear Res; 2004 Feb; 188(1-2):57-69. PubMed ID: 14759571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lidocaine on basilar membrane vibration in the guinea pig.
    Maruyama J; Kobayashi T; Sugimoto A; Gyo K
    Acta Otolaryngol; 2001 Oct; 121(7):803-7. PubMed ID: 11718242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses.
    Shera CA
    J Acoust Soc Am; 2015 Dec; 138(6):3717-22. PubMed ID: 26723327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basilar membrane responses to broadband stimuli.
    Recio A; Rhode WS
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2281-98. PubMed ID: 11108369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basilar membrane motion in the pigeon measured with the Mössbauer technique.
    Gummer AW; Smolders JW; Klinke R
    Hear Res; 1987; 29(1):63-92. PubMed ID: 3654398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2805-18. PubMed ID: 17550179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):365-72. PubMed ID: 17065831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.