These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8473603)

  • 41. [Research on basilar membrane vibration of guinea pigs elicited by direct current pulse].
    Guo M; Ren T; Nuttall AL
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Oct; 32(5):259-63. PubMed ID: 10743087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparison of OAEs arising from different generation mechanisms in guinea pig.
    Withnell RH; Dhar S; Thomsen A
    Hear Res; 2005 Sep; 207(1-2):76-86. PubMed ID: 15935577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noise in magnetic resonance imaging: no risk for sensorineural function but increased amplitude variability of otoacoustic emissions.
    Wagner W; Staud I; Frank G; Dammann F; Plontke S; Plinkert PK
    Laryngoscope; 2003 Jul; 113(7):1216-23. PubMed ID: 12838022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A New Hypothesis on the Frequency Discrimination of the Cochlea.
    Bulut E; Uzun C; Öztürk L; Turan P; Kanter M; Arbak S
    J Int Adv Otol; 2017 Aug; 13(2):204-210. PubMed ID: 28414275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs].
    Kong W; Yang Y; Zhang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tuning the cochlea: wave-mediated positive feedback between cells.
    Bell A
    Biol Cybern; 2007 Apr; 96(4):421-38. PubMed ID: 17216524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity.
    Peake WT; Ling A
    J Acoust Soc Am; 1980 May; 67(5):1736-45. PubMed ID: 7372928
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Representation of acoustic signals in the human cochlea in presence of a cochlear implant electrode.
    Kiefer J; Böhnke F; Adunka O; Arnold W
    Hear Res; 2006 Nov; 221(1-2):36-43. PubMed ID: 16962268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea.
    Russell IJ; Kössl M
    J Neurophysiol; 1999 Aug; 82(2):676-86. PubMed ID: 10444665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA; Rich NC
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.
    Chan WX; Yoon YJ
    Hear Res; 2015 Sep; 327():136-42. PubMed ID: 26070425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea.
    Rhode WS; Recio A
    J Acoust Soc Am; 2001 Dec; 110(6):3140-54. PubMed ID: 11785815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A linearly tapered box model of the cochlea.
    Ni G; Sun L; Elliott SJ
    J Acoust Soc Am; 2017 Mar; 141(3):1793. PubMed ID: 28372063
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the human helicotrema: implications for cochlear duct length and frequency mapping.
    Helpard L; Li H; Rask-Andersen H; Ladak HM; Agrawal SK
    J Otolaryngol Head Neck Surg; 2020 Jan; 49(1):2. PubMed ID: 31907040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea.
    Shera CA
    J Acoust Soc Am; 2007 Nov; 122(5):2738-58. PubMed ID: 18189566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluid focusing and viscosity allow high gain and stability of the cochlear response.
    Sisto R; Belardinelli D; Moleti A
    J Acoust Soc Am; 2021 Dec; 150(6):4283. PubMed ID: 34972263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.