These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8473625)

  • 1. Comparison of spectral and nonspectral frequency difference limens for human and nonhuman primates.
    Pfingst BE
    J Acoust Soc Am; 1993 Apr; 93(4 Pt 1):2124-9. PubMed ID: 8473625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of level on nonspectral frequency difference limens for electrical and acoustic stimuli.
    Pfingst BE; Rai DT
    Hear Res; 1990 Dec; 50(1-2):43-56. PubMed ID: 2076982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pitch perception: dissociating frequency from fundamental-frequency discrimination.
    Oxenham AJ; Micheyl C
    Adv Exp Med Biol; 2013; 787():137-45. PubMed ID: 23716218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stimulus level on nonspectral frequency discrimination by human subjects.
    Pfingst BE; Holloway LA; Poopat N; Subramanya AR; Warren MF; Zwolan TA
    Hear Res; 1994 Aug; 78(2):197-209. PubMed ID: 7982813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related difference in melodic pitch perception is probably mediated by temporal processing: empirical and computational evidence.
    Russo FA; Ives DT; Goy H; Pichora-Fuller MK; Patterson RD
    Ear Hear; 2012; 33(2):177-86. PubMed ID: 22367092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of real and illusory glides on pure-tone frequency discrimination.
    Lyzenga J; Carlyon RP; Moore BC
    J Acoust Soc Am; 2004 Jul; 116(1):491-501. PubMed ID: 15296008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear explanation for bone-conducted ultrasonic hearing.
    Fujimoto K; Nakagawa S; Tonoike M
    Hear Res; 2005 Jun; 204(1-2):210-5. PubMed ID: 15925206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of frequency modulation in the FM-bat Phyllostomus discolor.
    Esser KH; Kiefer R
    J Comp Physiol A; 1996 Jun; 178(6):787-96. PubMed ID: 8667292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency difference limens of pure tones and harmonics within complex stimuli in Mongolian gerbils and humans.
    Klinge A; Klump GM
    J Acoust Soc Am; 2009 Jan; 125(1):304-14. PubMed ID: 19173417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination.
    Strainer JC; Ulmer JL; Yetkin FZ; Haughton VM; Daniels DL; Millen SJ
    AJNR Am J Neuroradiol; 1997 Apr; 18(4):601-10. PubMed ID: 9127019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of level and background noise on interaural time difference discrimination for transposed stimuli.
    Dreyer AA; Oxenham AJ
    J Acoust Soc Am; 2008 Jan; 123(1):EL1-7. PubMed ID: 18177063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Audiograms, gap detection thresholds, and frequency difference limens in cannabinoid receptor 1 knockout mice.
    Toal KL; Radziwon KE; Holfoth DP; Xu-Friedman MA; Dent ML
    Hear Res; 2016 Feb; 332():217-222. PubMed ID: 26427583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Pitch Strength of Bandpass Noise in Normal-Hearing and Hearing-Impaired Listeners.
    Horbach M; Verhey JL; Hots J
    Trends Hear; 2018; 22():2331216518787067. PubMed ID: 30009682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners.
    Zhang X; Gong Q
    Hear Res; 2017 Feb; 344():255-264. PubMed ID: 27956352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further examination of complex pitch perception in the absence of a place-rate match.
    Deeks JM; Gockel HE; Carlyon RP
    J Acoust Soc Am; 2013 Jan; 133(1):377-88. PubMed ID: 23297910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Temporal Envelope and Fine Structure in Mandarin Lexical Tone Perception in Auditory Neuropathy Spectrum Disorder.
    Wang S; Dong R; Liu D; Wang Y; Liu B; Zhang L; Xu L
    PLoS One; 2015; 10(6):e0129710. PubMed ID: 26052707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity.
    Moore BC; Peters RW
    J Acoust Soc Am; 1992 May; 91(5):2881-93. PubMed ID: 1629481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus).
    Osmanski MS; Song X; Wang X
    J Neurosci; 2013 May; 33(21):9161-8. PubMed ID: 23699526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects.
    Moore BC; Moore GA
    Hear Res; 2003 Aug; 182(1-2):153-63. PubMed ID: 12948610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplitude modulation reduces loudness adaptation to high-frequency tones.
    Wynne DP; George SE; Zeng FG
    J Acoust Soc Am; 2015 Jul; 138(1):279-83. PubMed ID: 26233027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.