These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 8474696)

  • 1. Reduced increase in plasma renin activity on water-deprivation in blind hereditary microphthalmic rats.
    Nagai K; Stoynev AG; Nagai N; Nakagawa H
    Neurosci Lett; 1993 Jan; 149(2):217-20. PubMed ID: 8474696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological changes in the hypothalamic suprachiasmatic nucleus and circadian rhythm of locomotor activity in hereditary microphthalmic rats.
    Sugita S; Minematsu M; Nagai K; Sugahara K
    Exp Anim; 1996 Apr; 45(2):115-24. PubMed ID: 8726135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Little or no induction of hyperglycemia by 2-deoxy-D-glucose in hereditary blind microphthalmic rats.
    Nagai K; Sekitani M; Otani K; Nakagawa H
    Life Sci; 1988; 43(20):1575-82. PubMed ID: 3057302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythms and energy metabolism with special reference to the suprachiasmatic nucleus.
    Nagai K; Nagai N; Sugahara K; Niijima A; Nakagawa H
    Neurosci Biobehav Rev; 1994; 18(4):579-84. PubMed ID: 7708372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Little or no response to 24-hr water-deprivation of Fos-like immunoreactivity in vasopressinergic magnocellular neurons in the hypothalamus of hereditary microphthalmic rats.
    Sugahara K; Nagai K; Isojima Y; Nagai N; Sugita S; Nakagawa H
    Exp Anim; 1997 Apr; 46(2):141-5. PubMed ID: 9145294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding rhythm and ornithine decarboxylase activity in hereditary microphthalmic rats.
    Shim S; Sugita S; Sugahara K; Tanaka H
    Physiol Behav; 1997 Dec; 62(6):1365-9. PubMed ID: 9383126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sympathetic activation cannot fully account for increased plasma renin levels during water deprivation.
    Blair ML; Woolf PD; Felten SY
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1197-203. PubMed ID: 9140020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of restricted food access on diurnal fluctuation of behaviors and biochemical functions in hereditary microphthalmic rats.
    Tanaka H; Shim S; Hitomi Y; Sugita S; Sugahara K
    Physiol Behav; 1999 Aug; 67(2):167-72. PubMed ID: 10477046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Fos immunoreactivity in rat brain during dehydration: effect of duration and timing of water deprivation.
    Morien A; Garrard L; Rowland NE
    Brain Res; 1999 Jan; 816(1):1-7. PubMed ID: 9878676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect on the plasma renin-aldosterone system of lesions to suprachiasmatic nuclei and central serotonin depletion in rats.
    Ikonomov OC; Shisheva AC; Stoynev AG; Kurtev IV
    Acta Physiol Hung; 1986; 68(2):211-9. PubMed ID: 3030046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of constant light and darkness on the circadian rhythms in rats. II. Plasma renin activity and insulin concentration.
    Ikonomov OC; Stoynev AG; Shisheva AC; Tarkolev NT
    Acta Physiol Pharmacol Bulg; 1985; 11(1):55-61. PubMed ID: 3898723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Morphometric and immunohistochemical studies of the suprachiasmatic nucleus in the hereditary microphthalmic rat].
    Sugita S; Ohsawa K
    Jikken Dobutsu; 1992 Oct; 41(4):437-42. PubMed ID: 1451752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation.
    Ibuka N; Inouye SI; Kawamura H
    Brain Res; 1977 Feb; 122(1):33-47. PubMed ID: 837222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of suprachiasmatic nuclei (SCN) lesions on the circadian variations in PRA and IRI level in the rat.
    Stoynev A; Ikonomov O; Tarkolev N; Shisheva A
    Acta Physiol Acad Sci Hung; 1980; 56(4):431-5. PubMed ID: 7025577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian rhythms of plasma renin levels in the anesthetized rat.
    Rodríguez-Sargent C; Cangiano JL; Martínez-Maldonado M
    Ren Physiol; 1982; 5(2):53-6. PubMed ID: 7041211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fetal tissue containing the suprachiasmatic nucleus restores multiple circadian rhythms in old rats.
    Li H; Satinoff E
    Am J Physiol; 1998 Dec; 275(6):R1735-44. PubMed ID: 9843862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian activity rhythms of rats with mid- and parasagittal 'split-SCN' knife cuts and pinealectomy.
    Yanovski JA; Rosenwasser AM; Levine JD; Adler NT
    Brain Res; 1990 Dec; 537(1-2):216-26. PubMed ID: 2085774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term effects of sleep deprivation on the mammalian circadian pacemaker.
    Deboer T; Détári L; Meijer JH
    Sleep; 2007 Mar; 30(3):257-62. PubMed ID: 17425221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restricted daytime feeding modifies suprachiasmatic nucleus vasopressin release in rats.
    Kalsbeek A; van Heerikhuize JJ; Wortel J; Buijs RM
    J Biol Rhythms; 1998 Feb; 13(1):18-29. PubMed ID: 9486840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian properties of anticipatory activity to restricted water access in suprachiasmatic-ablated hamsters.
    Mistlberger RE
    Am J Physiol; 1993 Jan; 264(1 Pt 2):R22-9. PubMed ID: 8430882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.