These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8476011)

  • 1. Unbiased estimates of quantal release parameters and spatial variation in the probability of neurosecretion.
    Provan SD; Miyamoto MD
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C1051-60. PubMed ID: 8476011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hypertonicity on augmentation and potentiation and on corresponding quantal parameters of transmitter release.
    Cheng H; Miyamoto MD
    J Neurophysiol; 1999 Mar; 81(3):1428-31. PubMed ID: 10085369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calmodulin increases transmitter release by mobilizing quanta at the frog motor nerve terminal.
    Brailoiu E; Miyamoto MD; Dun NJ
    Br J Pharmacol; 2002 Nov; 137(5):719-27. PubMed ID: 12381686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of black widow spider venom and Ca2+ on quantal secretion at the frog neuromuscular junction.
    Fesce R; Segal JR; Ceccarelli B; Hurlbut WP
    J Gen Physiol; 1986 Jul; 88(1):59-81. PubMed ID: 3488369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE; Sosa MA
    J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals.
    Curtis MJ; Quastel DM; Saint DA
    J Physiol; 1986 Apr; 373():243-60. PubMed ID: 2875177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the putative cognitive enhancer, linopirdine (DuP 996), on quantal parameters of acetylcholine release at the frog neuromuscular junction.
    Provan SD; Miyamoto MD
    Br J Pharmacol; 1994 Apr; 111(4):1103-10. PubMed ID: 8032596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrahydroaminoacridine and physostigmine have opposing effects on probability of transmitter release at the frog neuromuscular junction.
    Provan SD; Miyamoto MD
    Neurosci Lett; 1991 Feb; 123(1):127-30. PubMed ID: 1676497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantal transmitter release mediated by strontium at the mouse motor nerve terminal.
    Bain AI; Quastel DM
    J Physiol; 1992 May; 450():63-87. PubMed ID: 1359125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses.
    Silinsky EM
    J Physiol; 1978 Jan; 274():157-71. PubMed ID: 304889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular mechanism and site of action of ionic lanthanum at the motor nerve terminal.
    Provan SD; Miyamoto MD
    Neuroreport; 1992 Jan; 3(1):101-4. PubMed ID: 1319225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous activity at long-term silenced synapses in rat muscle.
    Gundersen K
    J Physiol; 1990 Nov; 430():399-418. PubMed ID: 1707969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in miniature end-plate currents due to high potassium and calcium at the frog neuromuscular junction.
    Glavinović MI
    Synapse; 1988; 2(6):636-43. PubMed ID: 3264941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniature endplate potential frequency and amplitude determined by an extension of Campbell's theorem.
    Segal JR; Ceccarelli B; Fesce R; Hurlbut WP
    Biophys J; 1985 Feb; 47(2 Pt 1):183-202. PubMed ID: 3872137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions.
    Miyamoto MD
    J Physiol; 1975 Aug; 250(1):121-42. PubMed ID: 240928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmitter release: prepackaging and random mechanism or dynamic and deterministic process.
    Kriebel ME; Vautrin J; Holsapple J
    Brain Res Brain Res Rev; 1990; 15(2):167-78. PubMed ID: 1980833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between quantal content and delayed quantal release.
    Van der Kloot W; Molgó J
    Neuroreport; 1995 Sep; 6(13):1807-10. PubMed ID: 8541487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of increase in quantal release by the thallous ion at frog end plates with and without nerve stimulation.
    Talbot PA
    J Gen Physiol; 1992 Nov; 100(5):881-901. PubMed ID: 1335478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Down-regulation of quantal size at frog neuromuscular junctions: possible roles for elevated intracellular calcium and for protein kinase C.
    Van der Kloot W
    J Neurobiol; 1991 Mar; 22(2):204-14. PubMed ID: 2030343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for two distinct processes in the final stages of neurotransmitter release as detected by binomial analysis in calcium and strontium solutions.
    Searl TJ; Silinsky EM
    J Physiol; 2002 Mar; 539(Pt 3):693-705. PubMed ID: 11897841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.