These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 8476282)
1. Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Lewis JG; Learmonth RP; Watson K Appl Environ Microbiol; 1993 Apr; 59(4):1065-71. PubMed ID: 8476282 [TBL] [Abstract][Full Text] [Related]
2. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Park JI; Grant CM; Attfield PV; Dawes IW Appl Environ Microbiol; 1997 Oct; 63(10):3818-24. PubMed ID: 9327544 [TBL] [Abstract][Full Text] [Related]
3. Cryoprotection of yeast by alcohols during rapid freezing. Lewis JG; Learmonth RP; Watson K Cryobiology; 1994 Apr; 31(2):193-8. PubMed ID: 8005000 [TBL] [Abstract][Full Text] [Related]
4. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Wei P; Li Z; Lin Y; He P; Jiang N Biotechnol Lett; 2007 Oct; 29(10):1501-8. PubMed ID: 17541503 [TBL] [Abstract][Full Text] [Related]
5. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. Chen A; Gibney PA J Appl Microbiol; 2022 Oct; 133(4):2390-2402. PubMed ID: 35801661 [TBL] [Abstract][Full Text] [Related]
6. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
7. Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. Lewis JG; Learmonth RP; Attfield PV; Watson K J Ind Microbiol Biotechnol; 1997 Jan; 18(1):30-6. PubMed ID: 9079286 [TBL] [Abstract][Full Text] [Related]
8. Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol. Merico A; Ragni E; Galafassi S; Popolo L; Compagno C J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1037-44. PubMed ID: 20878442 [TBL] [Abstract][Full Text] [Related]
9. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae. Bayliak MM; Hrynkiv OV; Knyhynytska RV; Lushchak VI Arch Microbiol; 2018 Jan; 200(1):33-46. PubMed ID: 28780590 [TBL] [Abstract][Full Text] [Related]
10. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach. Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744 [TBL] [Abstract][Full Text] [Related]
11. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Tulha J; Lima A; Lucas C; Ferreira C Microb Cell Fact; 2010 Nov; 9():82. PubMed ID: 21047428 [TBL] [Abstract][Full Text] [Related]
12. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae. Stoycheva T; Venkov P; Tsvetkov Ts Cryobiology; 2007 Jun; 54(3):243-50. PubMed ID: 17416359 [TBL] [Abstract][Full Text] [Related]
13. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles. Larson DJ; Barnes BM Physiol Biochem Zool; 2016; 89(4):340-6. PubMed ID: 27327184 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae. Momose Y; Matsumoto R; Maruyama A; Yamaoka M Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782 [TBL] [Abstract][Full Text] [Related]
15. Freeze-thaw injury in erythrocytes of the freeze-tolerant wood frog, Rana sylvatica. Costanzo JP; Lee RE Am J Physiol; 1991 Dec; 261(6 Pt 2):R1346-50. PubMed ID: 1750558 [TBL] [Abstract][Full Text] [Related]
16. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Izawa S; Ikeda K; Takahashi N; Inoue Y Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771 [TBL] [Abstract][Full Text] [Related]
17. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Tanghe A; Van Dijck P; Colavizza D; Thevelein JM Appl Environ Microbiol; 2004 Jun; 70(6):3377-82. PubMed ID: 15184134 [TBL] [Abstract][Full Text] [Related]
18. Repeated freeze-thaw cycles in freeze-tolerant treefrogs: novel interindividual variation of integrative biochemical, cellular, and organismal responses. Yokum EE; Wascher M; Goldstein DL; Krane CM Am J Physiol Regul Integr Comp Physiol; 2023 Feb; 324(2):R196-R206. PubMed ID: 36534587 [TBL] [Abstract][Full Text] [Related]
19. Cryopreservation of Bangladeshi ram semen using different diluents and manual freezing techniques. Jha PK; Shahi Alam MG; Mansur AA; Naher N; Islam T; Uddin Bhuiyan M; Bari FY Cryobiology; 2019 Aug; 89():35-41. PubMed ID: 31173735 [TBL] [Abstract][Full Text] [Related]