These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8476290)

  • 1. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids.
    Häggblom MM; Rivera MD; Young LY
    Appl Environ Microbiol; 1993 Apr; 59(4):1162-7. PubMed ID: 8476290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors.
    Kazumi J; Häggblom MM; Young LY
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):929-36. PubMed ID: 7576560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic degradation of halogenated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples.
    Häggblom MM; Rivera MD; Young LY
    FEMS Microbiol Lett; 1996 Nov; 144(2-3):213-9. PubMed ID: 9011523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia.
    Häggblom MM; Young LY
    Appl Environ Microbiol; 1995 Apr; 61(4):1546-50. PubMed ID: 7747970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium.
    Häggblom MM; Young LY
    Arch Microbiol; 1999 Mar; 171(4):230-6. PubMed ID: 10339806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive dehalogenation and conversion of 2-chlorophenol to 3-chlorobenzoate in a methanogenic sediment community: implications for predicting the environmental fate of chlorinated pollutants.
    Becker JG; Stahl DA; Rittmann BE
    Appl Environ Microbiol; 1999 Nov; 65(11):5169-72. PubMed ID: 10543840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophenol degradation coupled to sulfate reduction.
    Häggblom MM; Young LY
    Appl Environ Microbiol; 1990 Nov; 56(11):3255-60. PubMed ID: 2094244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific removal of chlorine from the ortho-position of halogenated benzoic acids by reductive dechlorination in anaerobic enrichment cultures.
    Gerritse J; van der Woude BJ; Gottschal JC
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):273-80. PubMed ID: 1478462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors.
    Bae HS; Yamagishi T; Suwa Y
    Chemosphere; 2004 Apr; 55(1):93-100. PubMed ID: 14720551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of long-term exposure, biogenic substrate presence, and electron acceptor conditions on the biodegradation of multiple substituted benzoates and phenolates.
    Hu Z; Ferraina RA; Ericson JF; Smets BF
    Water Res; 2005 Sep; 39(15):3501-10. PubMed ID: 16051311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions.
    Monserrate E; Häggblom MM
    Appl Environ Microbiol; 1997 Oct; 63(10):3911-5. PubMed ID: 9480645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate.
    Kohring GW; Zhang XM; Wiegel J
    Appl Environ Microbiol; 1989 Oct; 55(10):2735-7. PubMed ID: 2604410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of Monochlorinated and Nonchlorinated Aromatic Compounds under Iron-Reducing Conditions.
    Kazumi J; Haggblom MM; Young LY
    Appl Environ Microbiol; 1995 Nov; 61(11):4069-73. PubMed ID: 16535169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1.
    Dolfing J
    Arch Microbiol; 1990; 153(3):264-6. PubMed ID: 2334248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic Degradation of Chloroaromatic Compounds in Aquatic Sediments under a Variety of Enrichment Conditions.
    Genthner BR; Price WA; Pritchard PH
    Appl Environ Microbiol; 1989 Jun; 55(6):1466-71. PubMed ID: 16347940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1.
    Mohn WW; Kennedy KJ
    Appl Environ Microbiol; 1992 Apr; 58(4):1367-70. PubMed ID: 1599254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM; Young LY
    Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of 3-chlorobenzoate by thermophilic micro-organisms.
    Maloney SE; Marks TS; Sharp RJ
    Lett Appl Microbiol; 1997 Jun; 24(6):441-4. PubMed ID: 9203398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anaerobic degradation of 3-chloro-4-hydroxybenzoate in freshwater sediment proceeds via either chlorophenol or hydroxybenzoate to phenol and subsequently to benzoate.
    Zhang X; Wiegel J
    Appl Environ Microbiol; 1992 Nov; 58(11):3580-5. PubMed ID: 1482180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions.
    Bae HS; Yamagishi T; Suwa Y
    Microbiology (Reading); 2002 Jan; 148(Pt 1):221-227. PubMed ID: 11782514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.