BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 8476865)

  • 1. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles.
    Schellenberger V; Turck CW; Hedstrom L; Rutter WJ
    Biochemistry; 1993 Apr; 32(16):4349-53. PubMed ID: 8476865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the S' subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma mansoni.
    Schellenberger V; Turck CW; Rutter WJ
    Biochemistry; 1994 Apr; 33(14):4251-7. PubMed ID: 8155642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The specificity of clostripain from Clostridium histolyticum. Mapping the S' subsites via acyl transfer to amino acid amides and peptides.
    Ullmann D; Jakubke HD
    Eur J Biochem; 1994 Aug; 223(3):865-72. PubMed ID: 8055964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S' subsite mapping of serine proteases based on fluorescence resonance energy transfer.
    Grahn S; Kurth T; Ullmann D; Jakubke HD
    Biochim Biophys Acta; 1999 May; 1431(2):329-37. PubMed ID: 10350609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acyl transfer reactions catalyzed by native and modified alpha-chymotrypsin in acetonitrile with low water content.
    Cerovský V; Jakubke HD
    Enzyme Microb Technol; 1994 Jul; 16(7):596-601. PubMed ID: 7764990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant.
    Hedstrom L; Perona JJ; Rutter WJ
    Biochemistry; 1994 Jul; 33(29):8757-63. PubMed ID: 8038165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the S'-subsite specificity of papain.
    Schuster M; Kasche V; Jakubke HD
    Biochim Biophys Acta; 1992 May; 1121(1-2):207-12. PubMed ID: 1599943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The specificity of carboxypeptidase Y may be altered by changing the hydrophobicity of the S'1 binding pocket.
    Sørensen SB; Breddam K
    Protein Sci; 1997 Oct; 6(10):2227-32. PubMed ID: 9336845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting trypsin to chymotrypsin: ground-state binding does not determine substrate specificity.
    Hedstrom L; Farr-Jones S; Kettner CA; Rutter WJ
    Biochemistry; 1994 Jul; 33(29):8764-9. PubMed ID: 8038166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting trypsin to elastase: substitution of the S1 site and adjacent loops reconstitutes esterase specificity but not amidase activity.
    Hung SH; Hedstrom L
    Protein Eng; 1998 Aug; 11(8):669-73. PubMed ID: 9749919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting trypsin to chymotrypsin: structural determinants of S1' specificity.
    Kurth T; Ullmann D; Jakubke HD; Hedstrom L
    Biochemistry; 1997 Aug; 36(33):10098-104. PubMed ID: 9254605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the S'-subsite specificity of bovine pancreatic alpha-chymotrypsin via acyl transfer to added nucleophiles.
    Schellenberger V; Schellenberger U; Mitin YV; Jakubke HD
    Eur J Biochem; 1990 Jan; 187(1):163-7. PubMed ID: 2298203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting trypsin to chymotrypsin: the role of surface loops.
    Hedstrom L; Szilagyi L; Rutter WJ
    Science; 1992 Mar; 255(5049):1249-53. PubMed ID: 1546324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side reactions in enzymatic peptide synthesis in organic media: effects of enzyme, solvent, and substrate concentrations.
    Gololobov MYu ; Stepanov VM; Voyushina TL; Morozova IP; Adlercreutz P
    Enzyme Microb Technol; 1994 Jun; 16(6):522-8. PubMed ID: 7764892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the S'-subsite specificity of V8 proteinase via acyl transfer to added nucleophiles.
    Schuster M; Aaviksaar A; Schellenberger V; Jakubke HD
    Biochim Biophys Acta; 1990 Dec; 1036(3):245-7. PubMed ID: 2257279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide synthesis catalyzed by the serine proteinases chymotrypsin and trypsin.
    Riechmann L; Kasche V
    Biochim Biophys Acta; 1985 Aug; 830(2):164-72. PubMed ID: 4016137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of S'1 loop residues in the substrate specificities of pepsin A and chymosin.
    Kageyama T
    Biochemistry; 2004 Dec; 43(48):15122-30. PubMed ID: 15568804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic effects in the alpha-chymotrypsin-catalyzed acyl transfer. II. Efficiency of nucleophiles bearing charged groups in various locations.
    Schellenberger V; Jakubke HD; Kasche V
    Biochim Biophys Acta; 1991 May; 1078(1):8-11. PubMed ID: 2049385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spectrophotometric assay for the characterization of the S' subsite specificity of alpha-chymotrypsin.
    Schellenberger V; Jakubke HD
    Biochim Biophys Acta; 1986 Jan; 869(1):54-60. PubMed ID: 3942751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of disulfide bond C191-C220 in trypsin and chymotrypsin.
    Várallyay E; Lengyel Z; Gráf L; Szilágyi L
    Biochem Biophys Res Commun; 1997 Jan; 230(3):592-6. PubMed ID: 9015368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.