BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 8476865)

  • 41. The second nucleophile molecule binds to the acyl-enzyme-nucleophile complex in alpha-chymotrypsin catalysis. Kinetic evidence for the interaction.
    Gololobov MY; Stepanov VM; Voyushina TL; Adlercreutz P
    Eur J Biochem; 1993 Nov; 217(3):955-63. PubMed ID: 8223653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural consequences of accommodation of four non-cognate amino acid residues in the S1 pocket of bovine trypsin and chymotrypsin.
    Helland R; Czapinska H; Leiros I; Olufsen M; Otlewski J; Smalås AO
    J Mol Biol; 2003 Oct; 333(4):845-61. PubMed ID: 14568540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The differential specificity of chymotrypsin A and B is determined by amino acid 226.
    Hudáky P; Kaslik G; Venekei I; Gráf L
    Eur J Biochem; 1999 Jan; 259(1-2):528-33. PubMed ID: 9914536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subsite specificities of granzyme M: a study of inhibitors and newly synthesized thiobenzyl ester substrates.
    Rukamp BJ; Kam CM; Natarajan S; Bolton BW; Smyth MJ; Kelly JM; Powers JC
    Arch Biochem Biophys; 2004 Feb; 422(1):9-22. PubMed ID: 14725853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substitutions at the P(1) position in BPTI strongly affect the association energy with serine proteinases.
    Grzesiak A; Helland R; Smalås AO; Krowarsch D; Dadlez M; Otlewski J
    J Mol Biol; 2000 Aug; 301(1):205-17. PubMed ID: 10926503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human cytoplasmic antiproteinase neutralizes rapidly and efficiently chymotrypsin and trypsin-like proteases utilizing distinct reactive site residues.
    Riewald M; Schleef RR
    J Biol Chem; 1996 Jun; 271(24):14526-32. PubMed ID: 8662739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peptide synthesis by proteases in organic solvents: medium effect on substrate specificity.
    Nagashima T; Watanabe A; Kise H
    Enzyme Microb Technol; 1992 Oct; 14(10):842-7. PubMed ID: 1368970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases.
    Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M
    Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unexpected crucial role of residue 225 in serine proteases.
    Guinto ER; Caccia S; Rose T; Fütterer K; Waksman G; Di Cera E
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1852-7. PubMed ID: 10051558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pituitary multicatalytic proteinase complex. Specificity of components and aspects of proteolytic activity.
    Orlowski M; Michaud C
    Biochemistry; 1989 Nov; 28(24):9270-8. PubMed ID: 2535672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nucleophile specificity in alpha-chymotrypsin- and subtilisin-(Bacillus subtilis strain 72) catalyzed reactions.
    Gololobov MYu ; Voyushina TL; Stepanov VM; Adlercreutz P
    Biochim Biophys Acta; 1992 Nov; 1160(2):188-92. PubMed ID: 1445945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of the insertion loop around tryptophan 148 in tthe activity of thrombin.
    DiBella EE; Scheraga HA
    Biochemistry; 1996 Apr; 35(14):4427-33. PubMed ID: 8605192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mapping of the S' subsites of porcine pancreatic and human leucocyte elastases.
    Renaud A; Lestienne P; Hughes DL; Bieth JG; Dimicoli JL
    J Biol Chem; 1983 Jul; 258(13):8312-6. PubMed ID: 6553054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stereo- and sequence specificity of serine proteases in peptide synthesis.
    Kasche V; Michaelis G; Wiesemann T
    Biomed Biochim Acta; 1991; 50(10-11):S38-43. PubMed ID: 1820058
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interscaffolding additivity: binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine proteases.
    Krowarsch D; Dadlez M; Buczek O; Krokoszynska I; Smalas AO; Otlewski J
    J Mol Biol; 1999 May; 289(1):175-86. PubMed ID: 10339415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification and characterization of novel trypsin-like serine proteases from mouse spleen.
    Fukusen N; Aoki Y
    J Biochem; 1996 Apr; 119(4):633-8. PubMed ID: 8743562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organic solvent changes the chymotrypsin specificity with respect to nucleophiles.
    Gololobov MYu ; Voyushina TL; Stepanov VM; Adlercreutz P
    FEBS Lett; 1992 Aug; 307(3):309-12. PubMed ID: 1644186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic study of nucleophile specificity in dipeptide synthesis catalyzed by clostridiopeptidase B.
    Fortier G; Gagnon J
    Arch Biochem Biophys; 1990 Feb; 276(2):317-21. PubMed ID: 2306098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crystal structure of a trypsin-like mutant chymotrypsin: the role of position 226 in the activity and specificity of S189D chymotrypsin.
    Jelinek B; Katona G; Fodor K; Venekei I; Gráf L
    Protein J; 2008 Feb; 27(2):79-87. PubMed ID: 17805946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochemical and molecular characterization of serine proteases from larvae of Chrysomya bezziana, the Old World Screwworm fly.
    Muharsini S; Dalrymple B; Vuocolo T; Hamilton S; Willadsen P; Wijffels G
    Insect Biochem Mol Biol; 2001 Oct; 31(11):1029-40. PubMed ID: 11520682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.