These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8476867)

  • 41. A direct test of the "squeeze-out" hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface.
    Pastrana-Rios B; Flach CR; Brauner JW; Mautone AJ; Mendelsohn R
    Biochemistry; 1994 May; 33(17):5121-7. PubMed ID: 8172887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. What NMR can tell us about where lung surfactant proteins live.
    Morrow MR; Taneva S; Dico AS; Hancock J; Keough KM
    Biochem Soc Trans; 1997 Aug; 25(3):1103-7. PubMed ID: 9388607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of pulmonary surfactant protein D to phospholipid monolayers at the air-water interface.
    Taneva S; Voelker DR; Keough KM
    Biochemistry; 1997 Jul; 36(26):8173-9. PubMed ID: 9201966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers.
    Plasencia I; Cruz A; Casals C; Pérez-Gil J
    Biochem J; 2001 Nov; 359(Pt 3):651-9. PubMed ID: 11672440
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surfactant protein B: effects on lipid domain formation and intermembrane lipid flow.
    Creuwels LA; van Golde LM; Haagsman HP
    Biochim Biophys Acta; 1996 Nov; 1285(1):1-8. PubMed ID: 8948468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A synthetic segment of surfactant protein A: structure, in vitro surface activity, and in vivo efficacy.
    Walther FJ; David-Cu R; Leung C; Bruni R; Hernández-Juviel J; Gordon LM; Waring AJ
    Pediatr Res; 1996 Jun; 39(6):938-46. PubMed ID: 8725252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal stability and DPPC/Ca2+ interactions of pulmonary surfactant SP-A from bulk-phase and monolayer IR spectroscopy.
    Bi X; Taneva S; Keough KM; Mendelsohn R; Flach CR
    Biochemistry; 2001 Nov; 40(45):13659-69. PubMed ID: 11695915
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SP-B refining of pulmonary surfactant phospholipid films.
    Nag K; Munro JG; Inchley K; Schürch S; Petersen NO; Possmayer F
    Am J Physiol; 1999 Dec; 277(6):L1179-89. PubMed ID: 10600889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Palmitoylation of lung surfactant protein SP-C alters surface thermodynamics, but not protein secondary structure or orientation in 1,2-dipalmitoylphosphatidylcholine langmuir films.
    Flach CR; Gericke A; Keough KM; Mendelsohn R
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):11-20. PubMed ID: 9889301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction between perdeuterated dimyristoylphosphatidylcholine and low molecular weight pulmonary surfactant protein SP-C.
    Simatos GA; Forward KB; Morrow MR; Keough KM
    Biochemistry; 1990 Jun; 29(24):5807-14. PubMed ID: 2383558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films.
    Nag K; Taneva SG; Perez-Gil J; Cruz A; Keough KM
    Biophys J; 1997 Jun; 72(6):2638-50. PubMed ID: 9168039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pressure effects on dipalmitoylphosphatidylcholine bilayers measured by 2H nuclear magnetic resonance.
    Driscoll DA; Samarasinghe S; Adamy S; Jonas J; Jonas A
    Biochemistry; 1991 Apr; 30(13):3322-7. PubMed ID: 2009270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A deuterium NMR study of labelled n-alkanol anesthetics in a model membrane.
    Thewalt JL; Tulloch AP; Cushley RJ
    Chem Phys Lipids; 1986 Jan; 39(1-2):93-107. PubMed ID: 3753904
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distinct steps in the adsorption of pulmonary surfactant to an air-liquid interface.
    Walters RW; Jenq RR; Hall SB
    Biophys J; 2000 Jan; 78(1):257-66. PubMed ID: 10620290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.
    Nag K; Keough KM; Morrow MR
    Biophys J; 2006 May; 90(10):3632-42. PubMed ID: 16500977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: II. Monolayers of pulmonary surfactant protein SP-C and phospholipids.
    Taneva S; Keough KM
    Biophys J; 1994 Apr; 66(4):1149-57. PubMed ID: 8038386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calcium ions and interactions of pulmonary surfactant proteins SP-B and SP-C with phospholipids in spread monolayers at the air/water interface.
    Taneva SG; Keough KM
    Biochim Biophys Acta; 1995 May; 1236(1):185-95. PubMed ID: 7794949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation of membrane lattice structures and their specific interactions with surfactant protein A.
    Palaniyar N; Ridsdale RA; Hearn SA; Possmayer F; Harauz G
    Am J Physiol; 1999 Apr; 276(4):L642-9. PubMed ID: 10198362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.