These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8476977)

  • 1. A neural model for nonassociative learning in a prototypical sensory-motor scheme: the landing reaction in flies.
    Oğmen H; Moussa M
    Biol Cybern; 1993; 68(4):351-61. PubMed ID: 8476977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fly flight: a model for the neural control of complex behavior.
    Frye MA; Dickinson MH
    Neuron; 2001 Nov; 32(3):385-8. PubMed ID: 11709150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia.
    Castellucci V; Kandel ER
    Science; 1976 Dec; 194(4270):1176-8. PubMed ID: 11560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonassociative learning as gated neural integrator and differentiator in stimulus-response pathways.
    Poon CS; Young DL
    Behav Brain Funct; 2006 Aug; 2():29. PubMed ID: 16893471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory processing by motoneurons: a numerical model for low-level flight control in flies.
    Bartussek J; Lehmann FO
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-order behaviour in learning gate networks with lateral inhibition.
    Blanzieri E; Grandi F; Maio D
    Biol Cybern; 1996 Jan; 74(1):73-83. PubMed ID: 8573655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lower bound on the detectability of nonassociative learning in the local bending reflex of the medicinal leech.
    Lockery SR; Sejnowski TJ
    Behav Neural Biol; 1993 May; 59(3):208-24. PubMed ID: 8503826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An associational model of birdsong sensorimotor learning II. Temporal hierarchies and the learning of song sequence.
    Troyer TW; Doupe AJ
    J Neurophysiol; 2000 Sep; 84(3):1224-39. PubMed ID: 10979997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor transformation: from visual responses to motor commands.
    Krapp HG
    Curr Biol; 2010 Mar; 20(5):R236-9. PubMed ID: 20219173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations on the effect of an excitatory-inhibitory stimulus on the landing reaction of the fly, Calliphoridae.
    Negrin NS
    Percept Mot Skills; 1989 Jun; 68(3 Pt 1):823-9. PubMed ID: 2546122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of short-term habituation in the leech Hirudo medicinalis.
    Zaccardi ML; Mozzachiodi R; Traina G; Brunelli M; Scuri R
    Behav Brain Res; 2012 Apr; 229(1):235-43. PubMed ID: 22285419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A silicon implementation of the fly's optomotor control system.
    Harrison RR; Koch C
    Neural Comput; 2000 Oct; 12(10):2291-304. PubMed ID: 11032035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellular mechanisms of learning in Aplysia: of blind men and elephants.
    Glanzman DL
    Biol Bull; 2006 Jun; 210(3):271-9. PubMed ID: 16801500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipteran Halteres: Perspectives on Function and Integration for a Unique Sensory Organ.
    Yarger AM; Fox JL
    Integr Comp Biol; 2016 Nov; 56(5):865-876. PubMed ID: 27413092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonassociative learning processes affecting swimming probability in the seaslug Tritonia diomedea: habituation, sensitization and inhibition.
    Brown GD
    Behav Brain Res; 1998 Oct; 95(2):151-65. PubMed ID: 9806436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisensory systems integration for high-performance motor control in flies.
    Frye MA
    Curr Opin Neurobiol; 2010 Jun; 20(3):347-52. PubMed ID: 20202821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture.
    Corbacho F; Nishikawa KC; Weerasuriya A; Liaw JS; Arbib MA
    Biol Cybern; 2005 Dec; 93(6):391-409. PubMed ID: 16292659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating the behavioral and neural dynamics of response selection in a dual-task paradigm: a dynamic neural field model of Dux et al. (2009).
    Buss AT; Wifall T; Hazeltine E; Spencer JP
    J Cogn Neurosci; 2014 Feb; 26(2):334-51. PubMed ID: 24116841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feedforward model of suppressive and facilitatory habituation effects.
    Dragoi V
    Biol Cybern; 2002 Jun; 86(6):419-26. PubMed ID: 12111271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensory-motor control model of animal flight explains why bats fly differently in light versus dark.
    Bar NS; Skogestad S; Marçal JM; Ulanovsky N; Yovel Y
    PLoS Biol; 2015 Jan; 13(1):e1002046. PubMed ID: 25629809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.