These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8476996)

  • 61. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Formation of porous biodegradable scaffolds for tissue engineering].
    Hao B; Yin G; She L; Jiang X; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):140-3, 171. PubMed ID: 11951503
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds.
    Saito E; Liu Y; Migneco F; Hollister SJ
    Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size.
    Shiga K; Muramatsu N; Kondo T
    J Pharm Pharmacol; 1996 Sep; 48(9):891-5. PubMed ID: 8910847
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration.
    Evans GR; Brandt K; Widmer MS; Lu L; Meszlenyi RK; Gupta PK; Mikos AG; Hodges J; Williams J; Gürlek A; Nabawi A; Lohman R; Patrick CW
    Biomaterials; 1999 Jun; 20(12):1109-15. PubMed ID: 10382826
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function.
    Chun KW; Yoo HS; Yoon JJ; Park TG
    Biotechnol Prog; 2004; 20(6):1797-801. PubMed ID: 15575714
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular biointeractions of biomedical polymers with extracellular exudate and inflammatory cells and their effects on the biocompatibility, in vivo.
    Ali SA; Doherty PJ; Williams DF
    Biomaterials; 1994 Aug; 15(10):779-85. PubMed ID: 7986942
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles.
    Hong Z; Reis RL; Mano JF
    Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering.
    Fan M; Guo Q; Luo J; Luo F; Xie P; Tang X; Qian Z
    J Biomater Appl; 2013 Aug; 28(2):288-97. PubMed ID: 22561978
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture.
    Yang J; Shi G; Bei J; Wang S; Cao Y; Shang Q; Yang G; Wang W
    J Biomed Mater Res; 2002 Dec; 62(3):438-46. PubMed ID: 12209930
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability.
    Scaffaro R; Lopresti F; Botta L; Rigogliuso S; Ghersi G
    J Mech Behav Biomed Mater; 2016 Feb; 54():8-20. PubMed ID: 26410761
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems.
    Alonso MJ; Gupta RK; Min C; Siber GR; Langer R
    Vaccine; 1994 Mar; 12(4):299-306. PubMed ID: 8178550
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gelatine/PLLA sponge-like scaffolds: morphological and biological characterization.
    Lazzeri L; Cascone MG; Danti S; Serino LP; Moscato S; Bernardini N
    J Mater Sci Mater Med; 2006 Dec; 17(12):1211-7. PubMed ID: 17143751
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Poly(L-lactic acid) foams with cell seeding and controlled-release capacity.
    Lo H; Kadiyala S; Guggino SE; Leong KW
    J Biomed Mater Res; 1996 Apr; 30(4):475-84. PubMed ID: 8847355
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes.
    Puelacher WC; Mooney D; Langer R; Upton J; Vacanti JP; Vacanti CA
    Biomaterials; 1994 Aug; 15(10):774-8. PubMed ID: 7986941
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biodegradation and antitumour effect of adriamycin-containing poly(L-lactic acid) microspheres.
    Ike O; Shimizu Y; Ikada Y; Watanabe S; Natsume T; Wada R; Hyon SH; Hitomi S
    Biomaterials; 1991 Oct; 12(8):757-62. PubMed ID: 1799651
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents.
    Agrawal CM; Haas KF; Leopold DA; Clark HG
    Biomaterials; 1992; 13(3):176-82. PubMed ID: 1567942
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique.
    Hou Q; Grijpma DW; Feijen J
    Biomaterials; 2003 May; 24(11):1937-47. PubMed ID: 12615484
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biodegradable tablets having a matrix of low molecular weight poly-L-lactic acid and poly-D,L-lactic acid.
    Moll F; Köller G
    Arch Pharm (Weinheim); 1990 Oct; 323(10):887-8. PubMed ID: 2080895
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.