BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8477338)

  • 1. The comparative imperative: genetics and ontogeny of chemoreceptive prey responses in natricine snakes.
    Burghardt GM
    Brain Behav Evol; 1993; 41(3-5):138-46. PubMed ID: 8477338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prey availability influences the ontogeny and timing of chemoreception-based prey shifting in the striped crayfish snake, Regina alleni.
    Waters RM; Burghardt GM
    J Comp Psychol; 2013 Feb; 127(1):49-55. PubMed ID: 22946926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the tongue and senses in feeding of naive and experienced garter snakes.
    Burghardt GM; Pruitt CH
    Physiol Behav; 1975 Feb; 14(2):185-94. PubMed ID: 1161823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odorized air current trailing by garter snakes, Thamnophis sirtalis.
    Waters RM
    Brain Behav Evol; 1993; 41(3-5):219-23. PubMed ID: 8477343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome.
    Perry BW; Card DC; McGlothlin JW; Pasquesi GIM; Adams RH; Schield DR; Hales NR; Corbin AB; Demuth JP; Hoffmann FG; Vandewege MW; Schott RK; Bhattacharyya N; Chang BSW; Casewell NR; Whiteley G; Reyes-Velasco J; Mackessy SP; Gamble T; Storey KB; Biggar KK; Passow CN; Kuo CH; McGaugh SE; Bronikowski AM; de Koning APJ; Edwards SV; Pfrender ME; Minx P; Brodie ED; Brodie ED; Warren WC; Castoe TA
    Genome Biol Evol; 2018 Aug; 10(8):2110-2129. PubMed ID: 30060036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of antipredator responses in snakes: V. Species differences in ontogenetic trajectories.
    Herzog HA; Bowers BB; Burghardt GM
    Dev Psychobiol; 1992 Apr; 25(3):199-211. PubMed ID: 1618371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic basis for a feeding change in an insular population of garter snakes.
    Greenwell MG; Hall M; Sexton OJ
    Dev Psychobiol; 1984 Sep; 17(5):457-63. PubMed ID: 6479450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of nasal chemical senses in garter snake response to airborne odor cues from prey.
    Halpern M; Halpern J; Erichsen E; Borghjid S
    J Comp Psychol; 1997 Sep; 111(3):251-60. PubMed ID: 9286094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological analysis of the nasal chemical senses in garter snakes.
    Inouchi J; Wang D; Jiang XC; Kubie J; Halpern M
    Brain Behav Evol; 1993; 41(3-5):171-82. PubMed ID: 8386586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genetics of dietary experience in a restricted natural population.
    Burghardt GM; Layne DG; Konigsberg L
    Psychol Sci; 2000 Jan; 11(1):69-72. PubMed ID: 11228846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical basis of prey recognition in thamnophiine snakes: the unexpected new roles of parvalbumins.
    Smargiassi M; Daghfous G; Leroy B; Legreneur P; Toubeau G; Bels V; Wattiez R
    PLoS One; 2012; 7(6):e39560. PubMed ID: 22761824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prairie rattlesnakes (Crotalus viridis) respond to rodent blood with chemosensory searching.
    Chiszar D; Hobika G; Smith HM
    Brain Behav Evol; 1993; 41(3-5):229-33. PubMed ID: 8477345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and immunological analysis of prey-derived vomeronasal stimulants.
    Wang D; Jiang XC; Chen P; Inouchi J; Halpern M
    Brain Behav Evol; 1993; 41(3-5):246-54. PubMed ID: 7682890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical prey preference polymorphism in newborn garter snakes Thamnophis sirtalis.
    Burghardt GM
    Behaviour; 1975; 52(3-4):202-25. PubMed ID: 1147881
    [No Abstract]   [Full Text] [Related]  

  • 15. Convergence in trophic morphology and feeding performance among piscivorous natricine snakes.
    Vincent SE; Brandley MC; Herrel A; Alfaro ME
    J Evol Biol; 2009 Jun; 22(6):1203-11. PubMed ID: 19389153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Garter snake trailing behavior: effects of varying prey-extract concentration and mode of prey-extract presentation.
    Kubie JL
    J Comp Physiol Psychol; 1978 Apr; 92(2):362-73. PubMed ID: 670459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EVOLUTIONARY RESPONSE OF PREDATORS TO DANGEROUS PREY: PREADAPTATION AND THE EVOLUTION OF TETRODOTOXIN RESISTANCE IN GARTER SNAKES.
    Motychak JE; Brodie ED; Brodie ED
    Evolution; 1999 Oct; 53(5):1528-1535. PubMed ID: 28565572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Venom variation and chemoreception of the viperid Agkistrodon contortrix: evidence for adaptation?
    Greenbaum E; Galeva N; Jorgensen M
    J Chem Ecol; 2003 Aug; 29(8):1741-55. PubMed ID: 12956504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What makes a fang? Phylogenetic and ecological controls on tooth evolution in rear-fanged snakes.
    Westeen EP; Durso AM; Grundler MC; Rabosky DL; Davis Rabosky AR
    BMC Evol Biol; 2020 Jul; 20(1):80. PubMed ID: 32646372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogenetic prey size selection in snakes: predator size and functional limitations to handling minimum prey sizes.
    Hampton PM
    Zoology (Jena); 2018 Feb; 126():103-109. PubMed ID: 29203088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.