BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 8477453)

  • 21. Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production.
    Cazetta ML; Celligoi MA; Buzato JB; Scarmino IS
    Bioresour Technol; 2007 Nov; 98(15):2824-8. PubMed ID: 17420121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-solid enzymatic hydrolysis and fermentation of solka floc into ethanol.
    Um BH; Hanley TR
    J Microbiol Biotechnol; 2008 Jul; 18(7):1257-65. PubMed ID: 18667854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis.
    Zhang K; Lu X; Li Y; Jiang X; Liu L; Wang H
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2087-2099. PubMed ID: 30661108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production.
    Todhanakasem T; Wu B; Simeon S
    World J Microbiol Biotechnol; 2020 Jul; 36(8):112. PubMed ID: 32656581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation of Soybean Meal Hydrolyzates with Saccharomyces cerevisiae and Zymomonas mobilis for Ethanol Production.
    Luján-Rhenals DE; Morawicki RO; Gbur EE; Ricke SC
    J Food Sci; 2015 Jul; 80(7):E1512-8. PubMed ID: 25998174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances and prospects in metabolic engineering of Zymomonas mobilis.
    Wang X; He Q; Yang Y; Wang J; Haning K; Hu Y; Wu B; He M; Zhang Y; Bao J; Contreras LM; Yang S
    Metab Eng; 2018 Nov; 50():57-73. PubMed ID: 29627506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative evaluations of cellulosic raw materials for second generation bioethanol production.
    Jeon YJ; Xun Z; Rogers PL
    Lett Appl Microbiol; 2010 Nov; 51(5):518-24. PubMed ID: 20849394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers.
    Szambelan K; Nowak J; Czarnecki Z
    Biotechnol Lett; 2004 May; 26(10):845-8. PubMed ID: 15269559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis.
    Widiastuti H; Kim JY; Selvarasu S; Karimi IA; Kim H; Seo JS; Lee DY
    Biotechnol Bioeng; 2011 Mar; 108(3):655-65. PubMed ID: 20967753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of ethanol production by electrochemical redox coupling of Zymomonas mobilis and Saccharomyces cerevisiae.
    Jeon BY; Park DH
    J Microbiol Biotechnol; 2010 Jan; 20(1):94-100. PubMed ID: 20134239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.
    Ma K; Ruan Z; Shui Z; Wang Y; Hu G; He M
    Bioresour Technol; 2016 Mar; 203():295-302. PubMed ID: 26744803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical and biochemical analysis of ethanol fermentation of zymomonas mobilis KCCM11336.
    Jeon BY; Hwang TS; Park DH
    J Microbiol Biotechnol; 2009 Jul; 19(7):666-74. PubMed ID: 19652513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism.
    Pentjuss A; Odzina I; Kostromins A; Fell DA; Stalidzans E; Kalnenieks U
    J Biotechnol; 2013 May; 165(1):1-10. PubMed ID: 23471074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Metabolic engineering for microbial production of ethanol from xylose: a review].
    Zhang Y; Ma R; Hong H; Zhang W; Chen M; Lu W
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1436-43. PubMed ID: 21218632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pantothenate auxotrophy in Zymomonas mobilis ZM4 is due to a lack of aspartate decarboxylase activity.
    Gliessman JR; Kremer TA; Sangani AA; Jones-Burrage SE; McKinlay JB
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28655181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation.
    Liu YF; Hsieh CW; Chang YS; Wung BS
    BMC Biotechnol; 2017 Aug; 17(1):63. PubMed ID: 28764759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101.
    Mohagheghi A; Evans K; Chou YC; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():885-98. PubMed ID: 12018310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of stability study of continuous systems for ethanol production.
    Paz Astudillo IC; Cardona Alzate CA
    J Biotechnol; 2011 Jan; 151(1):43-55. PubMed ID: 21034786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biotechnological production of sorbitol.
    Silveira MM; Jonas R
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):400-8. PubMed ID: 12172602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of ethanol-responsive small RNAs in Zymomonas mobilis.
    Cho SH; Lei R; Henninger TD; Contreras LM
    Appl Environ Microbiol; 2014 Jul; 80(14):4189-98. PubMed ID: 24795378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.