These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 8477531)

  • 61. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties.
    Tricarico D; Camerino DC
    Mol Pharmacol; 1994 Oct; 46(4):754-61. PubMed ID: 7969056
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of an ATP-sensitive K+ channel in spiny neurons of rat caudate nucleus.
    Schwanstecher C; Panten U
    Pflugers Arch; 1994 May; 427(1-2):187-9. PubMed ID: 8058471
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular basis and characteristics of KATP channel in human corporal smooth muscle cells.
    Insuk SO; Chae MR; Choi JW; Yang DK; Sim JH; Lee SW
    Int J Impot Res; 2003 Aug; 15(4):258-66. PubMed ID: 12934053
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Glibenclamide selectively blocks ATP-sensitive K+ channels reconstituted from skeletal muscle.
    Light PE; French RJ
    Eur J Pharmacol; 1994 Jul; 259(3):219-22. PubMed ID: 7982447
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Opening of cardiac sarcolemmal KATP channels by dinitrophenol separate from metabolic inhibition.
    Alekseev AE; Gomez LA; Aleksandrova LA; Brady PA; Terzic A
    J Membr Biol; 1997 May; 157(2):203-14. PubMed ID: 9151661
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cytoplasmic unsaturated free fatty acids inhibit ATP-dependent gating of the G protein-gated K(+) channel.
    Kim D; Pleumsamran A
    J Gen Physiol; 2000 Mar; 115(3):287-304. PubMed ID: 10694258
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation.
    Gribble FM; Tucker SJ; Ashcroft FM
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):35-45. PubMed ID: 9350615
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pinacidil opens ATP-dependent K+ channels in cardiac myocytes in an ATP- and temperature-dependent manner.
    Martin CL; Chinn K
    J Cardiovasc Pharmacol; 1990 Mar; 15(3):510-4. PubMed ID: 1691378
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of pinacidil, RP 49356 and nicorandil on ATP-sensitive potassium channels in insulin-secreting cells.
    Dunne MJ
    Br J Pharmacol; 1990 Mar; 99(3):487-92. PubMed ID: 2158844
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nonspecific inhibition of adenosine-activated K+ current by glibenclamide in guinea pig atrial myocytes.
    Song Y; Srinivas M; Belardinelli L
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2430-7. PubMed ID: 8997302
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulation of ATP-sensitive K+ channels in rabbit ventricular myocytes by adenosine A1 receptor activation.
    Kim E; Han J; Ho W; Earm YE
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H325-33. PubMed ID: 9038953
    [TBL] [Abstract][Full Text] [Related]  

  • 72. ATP-sensitive potassium channels regulate stimulated ANF secretion in isolated rat heart.
    Xu T; Jiao JH; Pence RA; Baertschi AJ
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2339-45. PubMed ID: 8997291
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of P1060 and aprikalim on whole-cell currents in rat portal vein; inhibition by glibenclamide and phentolamine.
    Ibbotson T; Edwards G; Noack T; Weston AH
    Br J Pharmacol; 1993 Apr; 108(4):991-8. PubMed ID: 8485637
    [TBL] [Abstract][Full Text] [Related]  

  • 74. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes.
    Deutsch N; Weiss JN
    J Physiol; 1993 Jun; 465():163-79. PubMed ID: 8229832
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulation of spontaneous opening of muscarinic K+ channels in rabbit atrium.
    Kaibara M; Nakajima T; Irisawa H; Giles W
    J Physiol; 1991 Feb; 433():589-613. PubMed ID: 1841959
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1.
    Harvey J; McKenna F; Herson PS; Spanswick D; Ashford ML
    J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):527-35. PubMed ID: 9401961
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo.
    Xu J; Wang L; Hurt CM; Pelleg A
    Circulation; 1994 Mar; 89(3):1209-16. PubMed ID: 8124809
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ligand-insensitive state of cardiac ATP-sensitive K+ channels. Basis for channel opening.
    Alekseev AE; Brady PA; Terzic A
    J Gen Physiol; 1998 Feb; 111(2):381-94. PubMed ID: 9450949
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Coenzyme Q10 attenuates cyanide-activation of the ATP-sensitive K+ channel current in single cardiac myocytes of the guinea-pig.
    Ito H; Nakajima T; Takikawa R; Hamada E; Iguchi M; Sugimoto T; Kurachi Y
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jul; 344(1):133-6. PubMed ID: 1775189
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine. Implications for ischemic preconditioning.
    Liu Y; Gao WD; O'Rourke B; Marban E
    Circ Res; 1996 Mar; 78(3):443-54. PubMed ID: 8593703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.