BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8478332)

  • 1. Negative regulation of sigma 54-dependent dctA expression by the transcriptional activator DctD.
    Labes M; Finan TM
    J Bacteriol; 1993 May; 175(9):2674-81. PubMed ID: 8478332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.
    Labes M; Rastogi V; Watson R; Finan TM
    J Bacteriol; 1993 May; 175(9):2662-73. PubMed ID: 8478331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD.
    Watson RJ
    Mol Plant Microbe Interact; 1990; 3(3):174-81. PubMed ID: 2134335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem DctD-binding sites of the Rhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD.
    Ledebur H; Nixon BT
    Mol Microbiol; 1992 Dec; 6(23):3479-92. PubMed ID: 1474893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti.
    Yarosh OK; Charles TC; Finan TM
    Mol Microbiol; 1989 Jun; 3(6):813-23. PubMed ID: 2546011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum.
    Reid CJ; Poole PS
    J Bacteriol; 1998 May; 180(10):2660-9. PubMed ID: 9573150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti.
    Robinson JB; Bauer WD
    J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Escherichia coli cAMP receptor protein (CRP) represses the Rhizobium meliloti dctA promoter in a cAMP-dependent fashion.
    Wang YP; Giblin L; Boesten B; O'Gara F
    Mol Microbiol; 1993 Apr; 8(2):253-9. PubMed ID: 8391103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters.
    Ledebur H; Gu B; Sojda J; Nixon BT
    J Bacteriol; 1990 Jul; 172(7):3888-97. PubMed ID: 2193923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NtrBC-dependent expression from the Rhizobium meliloti dctA promoter in Escherichia coli.
    Allaway D; Boesten B; O'Gara F
    FEMS Microbiol Lett; 1995 May; 128(3):241-5. PubMed ID: 7781970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase.
    Lee JH; Hoover TR
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9702-6. PubMed ID: 7568201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation between coding and regulatory elements of Rhizobium meliloti and Rhizobium leguminosarum dct genes.
    Jiang J; Gu BH; Albright LM; Nixon BT
    J Bacteriol; 1989 Oct; 171(10):5244-53. PubMed ID: 2793824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal transduction in the Rhizobium meliloti dicarboxylic acid transport system.
    Giblin L; Boesten B; Turk S; Hooykaas P; O'Gara F
    FEMS Microbiol Lett; 1995 Feb; 126(1):25-30. PubMed ID: 7896073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the dctA gene in Rhizobium meliloti: effect on transport of C4 dicarboxylates and symbiotic nitrogen fixation.
    Rastogi V; Labes M; Finan T; Watson R
    Can J Microbiol; 1992 Jun; 38(6):555-62. PubMed ID: 1504920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of dct genes in the Rhizobium meliloti-alfalfa interaction.
    Giblin L; Archdeacon J; O'Gara F
    World J Microbiol Biotechnol; 1996 Mar; 12(2):151-6. PubMed ID: 24415162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations within the activation domain of the sigma 54-dependent activator DctD that prevent transcriptional activation.
    Wang YK; Hoover TR
    J Bacteriol; 1997 Sep; 179(18):5812-9. PubMed ID: 9294439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti.
    Sojda J; Gu B; Lee J; Hoover TR; Nixon BT
    Gene; 1999 Oct; 238(2):489-500. PubMed ID: 10570977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier.
    Engelke T; Jording D; Kapp D; PĆ¼hler A
    J Bacteriol; 1989 Oct; 171(10):5551-60. PubMed ID: 2551890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dicarboxylate transport by rhizobia.
    Yurgel SN; Kahn ML
    FEMS Microbiol Rev; 2004 Oct; 28(4):489-501. PubMed ID: 15374663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizobium meliloti DctD, a sigma 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module.
    Gu B; Lee JH; Hoover TR; Scholl D; Nixon BT
    Mol Microbiol; 1994 Jul; 13(1):51-66. PubMed ID: 7984094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.