BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8478340)

  • 1. Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus.
    de Jonge BL; Sidow T; Chang YS; Labischinski H; Berger-Bachi B; Gage DA; Tomasz A
    J Bacteriol; 1993 May; 175(9):2779-82. PubMed ID: 8478340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus.
    Sugai M; Fujiwara T; Ohta K; Komatsuzawa H; Ohara M; Suginaka H
    J Bacteriol; 1997 Jul; 179(13):4311-8. PubMed ID: 9209049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains.
    Maidhof H; Reinicke B; Blümel P; Berger-Bächi B; Labischinski H
    J Bacteriol; 1991 Jun; 173(11):3507-13. PubMed ID: 2045371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus.
    Strandén AM; Ehlert K; Labischinski H; Berger-Bächi B
    J Bacteriol; 1997 Jan; 179(1):9-16. PubMed ID: 8981974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall.
    Ton-That H; Labischinski H; Berger-Bächi B; Schneewind O
    J Biol Chem; 1998 Oct; 273(44):29143-9. PubMed ID: 9786923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus.
    Henze U; Sidow T; Wecke J; Labischinski H; Berger-Bächi B
    J Bacteriol; 1993 Mar; 175(6):1612-20. PubMed ID: 8383661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation.
    Rohrer S; Ehlert K; Tschierske M; Labischinski H; Berger-Bächi B
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9351-6. PubMed ID: 10430946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peptidoglycan composition of a Staphylococcus aureus mutant selected for reduced methicillin resistance.
    Ornelas-Soares A; de Lencastre H; de Jonge B; Gage D; Chang YS; Tomasz A
    J Biol Chem; 1993 Dec; 268(35):26268-72. PubMed ID: 8253748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation.
    Tschierske M; Ehlert K; Strandén AM; Berger-Bächi B
    FEMS Microbiol Lett; 1997 Aug; 153(2):261-4. PubMed ID: 9271851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus.
    DeHart HP; Heath HE; Heath LS; LeBlanc PA; Sloan GL
    Appl Environ Microbiol; 1995 Apr; 61(4):1475-9. PubMed ID: 7747966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptidoglycan composition in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureus strain.
    de Jonge BL; Chang YS; Gage D; Tomasz A
    J Biol Chem; 1992 Jun; 267(16):11255-9. PubMed ID: 1317861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation.
    Atrih A; Bacher G; Allmaier G; Williamson MP; Foster SJ
    J Bacteriol; 1999 Jul; 181(13):3956-66. PubMed ID: 10383963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation.
    Ehlert K; Schröder W; Labischinski H
    J Bacteriol; 1997 Dec; 179(23):7573-6. PubMed ID: 9393725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain.
    de Jonge BL; Chang YS; Xu N; Gage D
    Antimicrob Agents Chemother; 1996 Jun; 40(6):1498-503. PubMed ID: 8726026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level (beta)-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus.
    Severin A; Wu SW; Tabei K; Tomasz A
    J Bacteriol; 2005 Oct; 187(19):6651-8. PubMed ID: 16166526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced methicillin resistance in a new Staphylococcus aureus transposon mutant that incorporates muramyl dipeptides into the cell wall peptidoglycan.
    Ornelas-Soares A; de Lencastre H; de Jonge BL; Tomasz A
    J Biol Chem; 1994 Nov; 269(44):27246-50. PubMed ID: 7961632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of three additional femAB-like open reading frames in Staphylococcus aureus.
    Tschierske M; Mori C; Rohrer S; Ehlert K; Shaw KJ; Berger-Bächi B
    FEMS Microbiol Lett; 1999 Feb; 171(2):97-102. PubMed ID: 10077832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FmhA and FmhC of
    Willing S; Dyer E; Schneewind O; Missiakas D
    J Biol Chem; 2020 Sep; 295(39):13664-13676. PubMed ID: 32759309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus.
    Komatsuzawa H; Ohta K; Sugai M; Fujiwara T; Glanzmann P; Berger-BächiB ; Suginaka H
    J Antimicrob Chemother; 2000 Apr; 45(4):421-31. PubMed ID: 10896508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staphylococcus aureus mutants with increased lysostaphin resistance.
    Gründling A; Missiakas DM; Schneewind O
    J Bacteriol; 2006 Sep; 188(17):6286-97. PubMed ID: 16923896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.