These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 8478340)
1. Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. de Jonge BL; Sidow T; Chang YS; Labischinski H; Berger-Bachi B; Gage DA; Tomasz A J Bacteriol; 1993 May; 175(9):2779-82. PubMed ID: 8478340 [TBL] [Abstract][Full Text] [Related]
2. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. Sugai M; Fujiwara T; Ohta K; Komatsuzawa H; Ohara M; Suginaka H J Bacteriol; 1997 Jul; 179(13):4311-8. PubMed ID: 9209049 [TBL] [Abstract][Full Text] [Related]
3. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Maidhof H; Reinicke B; Blümel P; Berger-Bächi B; Labischinski H J Bacteriol; 1991 Jun; 173(11):3507-13. PubMed ID: 2045371 [TBL] [Abstract][Full Text] [Related]
4. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. Strandén AM; Ehlert K; Labischinski H; Berger-Bächi B J Bacteriol; 1997 Jan; 179(1):9-16. PubMed ID: 8981974 [TBL] [Abstract][Full Text] [Related]
5. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall. Ton-That H; Labischinski H; Berger-Bächi B; Schneewind O J Biol Chem; 1998 Oct; 273(44):29143-9. PubMed ID: 9786923 [TBL] [Abstract][Full Text] [Related]
6. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. Henze U; Sidow T; Wecke J; Labischinski H; Berger-Bächi B J Bacteriol; 1993 Mar; 175(6):1612-20. PubMed ID: 8383661 [TBL] [Abstract][Full Text] [Related]
7. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Rohrer S; Ehlert K; Tschierske M; Labischinski H; Berger-Bächi B Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9351-6. PubMed ID: 10430946 [TBL] [Abstract][Full Text] [Related]
8. The peptidoglycan composition of a Staphylococcus aureus mutant selected for reduced methicillin resistance. Ornelas-Soares A; de Lencastre H; de Jonge B; Gage D; Chang YS; Tomasz A J Biol Chem; 1993 Dec; 268(35):26268-72. PubMed ID: 8253748 [TBL] [Abstract][Full Text] [Related]
9. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation. Tschierske M; Ehlert K; Strandén AM; Berger-Bächi B FEMS Microbiol Lett; 1997 Aug; 153(2):261-4. PubMed ID: 9271851 [TBL] [Abstract][Full Text] [Related]
10. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. DeHart HP; Heath HE; Heath LS; LeBlanc PA; Sloan GL Appl Environ Microbiol; 1995 Apr; 61(4):1475-9. PubMed ID: 7747966 [TBL] [Abstract][Full Text] [Related]
11. Peptidoglycan composition in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureus strain. de Jonge BL; Chang YS; Gage D; Tomasz A J Biol Chem; 1992 Jun; 267(16):11255-9. PubMed ID: 1317861 [TBL] [Abstract][Full Text] [Related]
12. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. Atrih A; Bacher G; Allmaier G; Williamson MP; Foster SJ J Bacteriol; 1999 Jul; 181(13):3956-66. PubMed ID: 10383963 [TBL] [Abstract][Full Text] [Related]
13. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. Ehlert K; Schröder W; Labischinski H J Bacteriol; 1997 Dec; 179(23):7573-6. PubMed ID: 9393725 [TBL] [Abstract][Full Text] [Related]
14. Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain. de Jonge BL; Chang YS; Xu N; Gage D Antimicrob Agents Chemother; 1996 Jun; 40(6):1498-503. PubMed ID: 8726026 [TBL] [Abstract][Full Text] [Related]
15. High-level (beta)-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus. Severin A; Wu SW; Tabei K; Tomasz A J Bacteriol; 2005 Oct; 187(19):6651-8. PubMed ID: 16166526 [TBL] [Abstract][Full Text] [Related]
16. Reduced methicillin resistance in a new Staphylococcus aureus transposon mutant that incorporates muramyl dipeptides into the cell wall peptidoglycan. Ornelas-Soares A; de Lencastre H; de Jonge BL; Tomasz A J Biol Chem; 1994 Nov; 269(44):27246-50. PubMed ID: 7961632 [TBL] [Abstract][Full Text] [Related]
17. Identification of three additional femAB-like open reading frames in Staphylococcus aureus. Tschierske M; Mori C; Rohrer S; Ehlert K; Shaw KJ; Berger-Bächi B FEMS Microbiol Lett; 1999 Feb; 171(2):97-102. PubMed ID: 10077832 [TBL] [Abstract][Full Text] [Related]
18. FmhA and FmhC of Willing S; Dyer E; Schneewind O; Missiakas D J Biol Chem; 2020 Sep; 295(39):13664-13676. PubMed ID: 32759309 [TBL] [Abstract][Full Text] [Related]
19. Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. Komatsuzawa H; Ohta K; Sugai M; Fujiwara T; Glanzmann P; Berger-BächiB ; Suginaka H J Antimicrob Chemother; 2000 Apr; 45(4):421-31. PubMed ID: 10896508 [TBL] [Abstract][Full Text] [Related]