These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The poro-elastic behaviour of the intervertebral disc: A new perspective on diurnal fluid flow. Vergroesen PA; van der Veen AJ; Emanuel KS; van Dieën JH; Smit TH J Biomech; 2016 Apr; 49(6):857-863. PubMed ID: 26684430 [TBL] [Abstract][Full Text] [Related]
3. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study. Emanuel KS; van der Veen AJ; Rustenburg CME; Smit TH; Kingma I J Biomech; 2018 Mar; 70():10-15. PubMed ID: 29096981 [TBL] [Abstract][Full Text] [Related]
4. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846 [TBL] [Abstract][Full Text] [Related]
5. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle. Malko JA; Hutton WC; Fajman WA Spine (Phila Pa 1976); 1999 May; 24(10):1015-22. PubMed ID: 10332795 [TBL] [Abstract][Full Text] [Related]
6. In vivo diurnal variation in intervertebral disc volume and morphology. Botsford DJ; Esses SI; Ogilvie-Harris DJ Spine (Phila Pa 1976); 1994 Apr; 19(8):935-40. PubMed ID: 8009352 [TBL] [Abstract][Full Text] [Related]
7. Fluid flow and convective transport of solutes within the intervertebral disc. Ferguson SJ; Ito K; Nolte LP J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324 [TBL] [Abstract][Full Text] [Related]
8. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
9. Osmoviscoelastic finite element model of the intervertebral disc. Schroeder Y; Wilson W; Huyghe JM; Baaijens FP Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211 [TBL] [Abstract][Full Text] [Related]
10. Osmotic Pressure Alters Time-dependent Recovery Behavior of the Intervertebral Disc. Bezci SE; O'Connell GD Spine (Phila Pa 1976); 2018 Mar; 43(6):E334-E340. PubMed ID: 28767637 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. Koeller W; Funke F; Hartmann F Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283 [TBL] [Abstract][Full Text] [Related]
12. Height change caused by creep in intervertebral discs: a sagittal plane model. Keller TS; Nathan M J Spinal Disord; 1999 Aug; 12(4):313-24. PubMed ID: 10451048 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
14. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725 [TBL] [Abstract][Full Text] [Related]
15. Changes in intervertebral disc cross-sectional area with bed rest and space flight. LeBlanc AD; Evans HJ; Schneider VS; Wendt RE; Hedrick TD Spine (Phila Pa 1976); 1994 Apr; 19(7):812-7. PubMed ID: 8202800 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Koeller W; Meier W; Hartmann F Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843 [TBL] [Abstract][Full Text] [Related]
17. Assessment of disc injury in subjects exposed to long-term whole-body vibration. Drerup B; Granitzka M; Assheuer J; Zerlett G Eur Spine J; 1999; 8(6):458-67. PubMed ID: 10664303 [TBL] [Abstract][Full Text] [Related]
18. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Izambert O; Mitton D; Thourot M; Lavaste F Eur Spine J; 2003 Dec; 12(6):562-6. PubMed ID: 14605972 [TBL] [Abstract][Full Text] [Related]
19. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. Lu YM; Hutton WC; Gharpuray VM J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680 [TBL] [Abstract][Full Text] [Related]
20. The effect of creep on human lumbar intervertebral disk impact mechanics. Jamison D; Marcolongo MS J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]