These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8478360)

  • 1. Decomposition of superimposed ground reaction forces into left and right force profiles.
    Davis BL; Cavanagh PR
    J Biomech; 1993; 26(4-5):593-7. PubMed ID: 8478360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait.
    Villeger D; Costes A; Watier B; Moretto P
    Med Eng Phys; 2014 Nov; 36(11):1530-5. PubMed ID: 25239287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Subject-Specific Foot-Ground Contact Model for Walking.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2016 Sep; 138(9):0910021-09100212. PubMed ID: 27379886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of center of pressure alteration on the ground reaction force during gait: A statistical model.
    Shaulian H; Solomonow-Avnon D; Herman A; Rozen N; Haim A; Wolf A
    Gait Posture; 2018 Oct; 66():107-113. PubMed ID: 30172216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust machine learning enabled decomposition of shear ground reaction forces during the double contact phase of walking.
    Bastien GJ; Gosseye TP; Penta M
    Gait Posture; 2019 Sep; 73():221-227. PubMed ID: 31374439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the vertical ground reaction forces acting upon individual limbs during healthy and clinical gait.
    Meurisse GM; Dierick F; Schepens B; Bastien GJ
    Gait Posture; 2016 Jan; 43():245-50. PubMed ID: 26549482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments.
    Shahabpoor E; Pavic A
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ground contact characteristics of Tai Chi gait.
    Wu G; Hitt J
    Gait Posture; 2005 Aug; 22(1):32-9. PubMed ID: 15996589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking.
    Koopman B; Grootenboer HJ; de Jongh HJ
    J Biomech; 1995 Nov; 28(11):1369-76. PubMed ID: 8522549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Center of pressure trajectory during gait: a comparison of four foot positions.
    Lugade V; Kaufman K
    Gait Posture; 2014 Sep; 40(4):719-22. PubMed ID: 25052586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sagittal plane ground reaction forces, centre of pressure and centre of mass in trotting horses.
    Hobbs SJ; Clayton HM
    Vet J; 2013 Dec; 198 Suppl 1():e14-9. PubMed ID: 24138935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between obstacle height and center of pressure velocity during obstacle crossing.
    Wang Y; Watanabe K
    Gait Posture; 2008 Jan; 27(1):172-5. PubMed ID: 17416525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of pressure insoles to calculate the complete ground reaction forces.
    Forner Cordero A; Koopman HJ; van der Helm FC
    J Biomech; 2004 Sep; 37(9):1427-32. PubMed ID: 15275851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plantar pressure reduction in an incremental weight-bearing system.
    Flynn TW; Canavan PK; Cavanagh PR; Chiang JH
    Phys Ther; 1997 Apr; 77(4):410-6. PubMed ID: 9105343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?
    Usherwood JR; Channon AJ; Myatt JP; Rankin JW; Hubel TY
    J R Soc Interface; 2012 Oct; 9(75):2396-402. PubMed ID: 22572024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of ground reaction forces in level and incline/decline walking from a multistage analysis of plantar pressure data.
    Wei F; Crechiolo A; Haut RC
    J Biomech; 2019 Feb; 84():46-51. PubMed ID: 30579578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition of three-dimensional ground-reaction forces under both feet during gait.
    Samadi B; Raison M; Ballaz L; Achiche S
    J Musculoskelet Neuronal Interact; 2017 Dec; 17(4):283-291. PubMed ID: 29199187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.