These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8478412)
1. Blockade of nitric oxide synthesis in rats strongly attenuates the CBF response to extracellular acidosis. Niwa K; Lindauer U; Villringer A; Dirnagl U J Cereb Blood Flow Metab; 1993 May; 13(3):535-9. PubMed ID: 8478412 [TBL] [Abstract][Full Text] [Related]
2. Nitric oxide modulates the CBF response to increased extracellular potassium. Dreier JP; Körner K; Görner A; Lindauer U; Weih M; Villringer A; Dirnagl U J Cereb Blood Flow Metab; 1995 Nov; 15(6):914-9. PubMed ID: 7593351 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. Dreier JP; Körner K; Ebert N; Görner A; Rubin I; Back T; Lindauer U; Wolf T; Villringer A; Einhäupl KM; Lauritzen M; Dirnagl U J Cereb Blood Flow Metab; 1998 Sep; 18(9):978-90. PubMed ID: 9740101 [TBL] [Abstract][Full Text] [Related]
4. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension. Wang Q; Paulson OB; Lassen NA J Cereb Blood Flow Metab; 1992 Nov; 12(6):947-53. PubMed ID: 1400648 [TBL] [Abstract][Full Text] [Related]
5. Role of the endogenous nitric oxide in the vasodilatory tone and CO2 responsiveness of the rostral ventrolateral medulla microcirculation in the rat. Wołk R; Nowicki D; Siemińska J; Trzebski A J Physiol Pharmacol; 1995 Jun; 46(2):127-39. PubMed ID: 7670122 [TBL] [Abstract][Full Text] [Related]
6. Cerebral blood flow changes during cortical spreading depression are not altered by inhibition of nitric oxide synthesis. Zhang ZG; Chopp M; Maynard KI; Moskowitz MA J Cereb Blood Flow Metab; 1994 Nov; 14(6):939-43. PubMed ID: 7523432 [TBL] [Abstract][Full Text] [Related]
7. Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. Horvath I; Sandor NT; Ruttner Z; McLaughlin AC J Cereb Blood Flow Metab; 1994 May; 14(3):503-9. PubMed ID: 8163593 [TBL] [Abstract][Full Text] [Related]
8. L-arginine-induced regional cerebral blood flow increase is abolished after transient focal cerebral ischemia in the rat. Sporer B; Martens KH; Koedel U; Haberl RL J Cereb Blood Flow Metab; 1997 Oct; 17(10):1074-80. PubMed ID: 9346432 [TBL] [Abstract][Full Text] [Related]
9. Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat. Pelligrino DA; Koenig HM; Albrecht RF J Cereb Blood Flow Metab; 1993 Jan; 13(1):80-7. PubMed ID: 8417012 [TBL] [Abstract][Full Text] [Related]
10. Indomethacin abolishes cerebral blood flow increase in response to acetazolamide-induced extracellular acidosis: a mechanism for its effect on hypercapnia? Wang Q; Paulson OB; Lassen NA J Cereb Blood Flow Metab; 1993 Jul; 13(4):724-7. PubMed ID: 8314925 [TBL] [Abstract][Full Text] [Related]
11. Widespread attenuation of the cerebrovascular reactivity to hypercapnia following inhibition of nitric oxide synthase in the conscious rat. Bonvento G; Seylaz J; Lacombe P J Cereb Blood Flow Metab; 1994 Sep; 14(5):699-703. PubMed ID: 7520450 [TBL] [Abstract][Full Text] [Related]
12. Impaired cerebrovascular reactivity after cortical spreading depression in rats: Restoration by nitric oxide or cGMP. Scheckenbach KE; Dreier JP; Dirnagl U; Lindauer U Exp Neurol; 2006 Dec; 202(2):449-55. PubMed ID: 16920100 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia. Iadecola C; Zhang F Am J Physiol; 1994 Feb; 266(2 Pt 2):R546-52. PubMed ID: 7511352 [TBL] [Abstract][Full Text] [Related]
14. The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to CO2 in vivo. Wang Q; Pelligrino DA; Koenig HM; Albrecht RF J Cereb Blood Flow Metab; 1994 Nov; 14(6):944-51. PubMed ID: 7929657 [TBL] [Abstract][Full Text] [Related]
15. Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats. Fabricius M; Lauritzen M Am J Physiol; 1994 Apr; 266(4 Pt 2):H1457-64. PubMed ID: 8184923 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates. Thompson BG; Pluta RM; Girton ME; Oldfield EH J Neurosurg; 1996 Jan; 84(1):71-8. PubMed ID: 8613839 [TBL] [Abstract][Full Text] [Related]
17. Modification of the hepatic hemodynamic response to acute changes in PaCO2 by nitric oxide synthase inhibition in rabbits. Losser MR; Lenfant F; Payen D Anesth Analg; 2010 Mar; 110(3):845-51. PubMed ID: 20008913 [TBL] [Abstract][Full Text] [Related]
18. Nitro-L-arginine attenuates hypercapnic cerebrovasodilation without affecting cerebral metabolism. Iadecola C; Xu X Am J Physiol; 1994 Feb; 266(2 Pt 2):R518-25. PubMed ID: 8141411 [TBL] [Abstract][Full Text] [Related]
19. Neuronal NOS-derived NO plays permissive role in cerebral blood flow response to hypercapnia. Okamoto H; Hudetz AG; Roman RJ; Bosnjak ZJ; Kampine JP Am J Physiol; 1997 Jan; 272(1 Pt 2):H559-66. PubMed ID: 9038979 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension. Jones SC; Easley KA; Radinsky CR; Chyatte D; Furlan AJ; Perez-Trepichio AD J Cereb Blood Flow Metab; 2003 Sep; 23(9):1085-95. PubMed ID: 12973025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]