These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8478423)
21. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Franco A; Lansman JB Nature; 1990 Apr; 344(6267):670-3. PubMed ID: 1691450 [TBL] [Abstract][Full Text] [Related]
22. Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy. Pritchard HAT; Pires PW; Yamasaki E; Thakore P; Earley S Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9745-E9752. PubMed ID: 30181262 [TBL] [Abstract][Full Text] [Related]
23. Relationship between force and Ca2+ in anococcygeal and vas deferens smooth muscle cells of the mouse. Boland B; Himpens B; Gillis JM; Casteels R Pflugers Arch; 1992 May; 421(1):43-51. PubMed ID: 1630884 [TBL] [Abstract][Full Text] [Related]
25. Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. Kumar A; Khandelwal N; Malya R; Reid MB; Boriek AM FASEB J; 2004 Jan; 18(1):102-13. PubMed ID: 14718391 [TBL] [Abstract][Full Text] [Related]
26. Effects of contractile activity on muscle damage in the dystrophin-deficient mdx mouse. McArdle A; Edwards RH; Jackson MJ Clin Sci (Lond); 1991 Apr; 80(4):367-71. PubMed ID: 1851074 [TBL] [Abstract][Full Text] [Related]
27. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Dowling P; Doran P; Ohlendieck K Biochem J; 2004 Apr; 379(Pt 2):479-88. PubMed ID: 14678011 [TBL] [Abstract][Full Text] [Related]
28. Altered acetylcholine release in the hippocampus of dystrophin-deficient mice. Parames SF; Coletta-Yudice ED; Nogueira FM; Nering de Sousa MB; Hayashi MA; Lima-Landman MT; Lapa AJ; Souccar C Neuroscience; 2014 Jun; 269():173-83. PubMed ID: 24704431 [TBL] [Abstract][Full Text] [Related]
29. In situ measurements of calpain activity in isolated muscle fibres from normal and dystrophin-lacking mdx mice. Gailly P; De Backer F; Van Schoor M; Gillis JM J Physiol; 2007 Aug; 582(Pt 3):1261-75. PubMed ID: 17510188 [TBL] [Abstract][Full Text] [Related]
30. Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice. Ito K; Kimura S; Ozasa S; Matsukura M; Ikezawa M; Yoshioka K; Ueno H; Suzuki M; Araki K; Yamamura K; Miwa T; Dickson G; Thomas GD; Miike T Hum Mol Genet; 2006 Jul; 15(14):2266-75. PubMed ID: 16777842 [TBL] [Abstract][Full Text] [Related]
31. Long-term study of Ca(2+) homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. De Backer F; Vandebrouck C; Gailly P; Gillis JM J Physiol; 2002 Aug; 542(Pt 3):855-65. PubMed ID: 12154184 [TBL] [Abstract][Full Text] [Related]
32. Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. Head SI J Physiol; 1993 Sep; 469():11-9. PubMed ID: 8271194 [TBL] [Abstract][Full Text] [Related]
33. PDGF-receptor concentration is elevated in regenerative muscle fibers in dystrophin-deficient muscle. Tidball JG; Spencer MJ; St Pierre BA Exp Cell Res; 1992 Nov; 203(1):141-9. PubMed ID: 1426037 [TBL] [Abstract][Full Text] [Related]
34. Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes. Marchand E; Constantin B; Balghi H; Claudepierre MC; Cantereau A; Magaud C; Mouzou A; Raymond G; Braun S; Cognard C Exp Cell Res; 2004 Jul; 297(2):363-79. PubMed ID: 15212940 [TBL] [Abstract][Full Text] [Related]
35. Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Johnson BD; Scheuer T; Catterall WA Proc Natl Acad Sci U S A; 2005 Mar; 102(11):4191-6. PubMed ID: 15753322 [TBL] [Abstract][Full Text] [Related]
36. Regeneration and myogenic cell proliferation correlate with taurine levels in dystrophin- and MyoD-deficient muscles. McIntosh LM; Garrett KL; Megeney L; Rudnicki MA; Anderson JE Anat Rec; 1998 Oct; 252(2):311-24. PubMed ID: 9776086 [TBL] [Abstract][Full Text] [Related]
37. Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression. Teichmann MD; Wegner FV; Fink RH; Chamberlain JS; Launikonis BS; Martinac B; Friedrich O PLoS One; 2008; 3(11):e3644. PubMed ID: 18982068 [TBL] [Abstract][Full Text] [Related]
38. Ca2+ images and K+ current during depolarization in smooth muscle cells of the guinea-pig vas deferens and urinary bladder. Imaizumi Y; Torii Y; Ohi Y; Nagano N; Atsuki K; Yamamura H; Muraki K; Watanabe M; Bolton TB J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):705-19. PubMed ID: 9660887 [TBL] [Abstract][Full Text] [Related]
39. Contractile properties and susceptibility to exercise-induced damage of normal and mdx mouse tibialis anterior muscle. Sacco P; Jones DA; Dick JR; Vrbová G Clin Sci (Lond); 1992 Feb; 82(2):227-36. PubMed ID: 1311662 [TBL] [Abstract][Full Text] [Related]
40. Effects of endothelin on the mechanical activity and cytosolic calcium level of various types of smooth muscle. Sakata K; Ozaki H; Kwon SC; Karaki H Br J Pharmacol; 1989 Oct; 98(2):483-92. PubMed ID: 2684313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]